

CrossRef DOI of original article:

1 Inventory Management and Control Systems in Covid-19 2 Pandemic Era: An Exploratory Study of Selected Health 3 Institutions in Anambra State, Nigeria

4 Iliemena, Rachael Okwudili¹, Aniefor, Sunday Jones² and Odukoya, Olusoji Olumide³

5 ¹ Nnamdi Azikiwe University

6 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

7 **Abstract**

8 The content and scope of this study explored inventory management and inventory control in
9 selected health institutions in Anambra state. The study adopted survey research design.
10 Inventory management, was measured by re-order level system, periodic review system and
11 economic order quantity model while inventory control, was measured by optimal stock level.
12 Out of a population of 74 drawn from 7 health institutions, Taro Yamane (1967) formula and
13 stratified sampling technique were used to determine the sample size of 66 respondents.
14

15 *Index terms*— inventory management, inventory control, COVID-19, health institutions, and challenges

16 **1 Introduction**

17 a) Background to the study inventory management and control which revolve around coordination of materials
18 availability, control, utilization and procurement of materials helps firms to maintain the optimum level of
19 inventory at any given time. Issues concerning inventory management generally involve the overall success of an
20 enterprise (Iliemena, Ijeoma & John-Akamelu, 2019). This is because, the revenue and profit capacities of any
21 business depend on its inventory level which also indirectly makes it an issue of concern when the sustainability of
22 a business institution is in discussion. Inventory management is however, not a new concept in itself as there have
23 been past studies in this regard (Bawa, Asamoah & Kissi, 2018; Prempeh, 2016; ??ensah, 2016; ??wanzi 2016).
24 Due to the nature of inventory in health institutions, health implication of poor inventory management system
25 and the need to ensure the sustainability of health institutions being one of the basic needs of an economy, we
26 considered it a very necessity to evaluate how effective the old systems of inventory management and control work
27 given the present COVID-19 pandemic emergencies. Owing to this, a lot of developed countries have adopted the
28 use of advanced technologies in inventory management but the case is reverse for developing countries like Nigeria
29 whose poor technological infrastructure and general economic condition may not support the advanced systems
30 (Dedunu & Weerasinghae, 2018). As effective inventory management system is basic to corporate success, the
31 inventory management objective of health institutions in the corona virus era is expected to constantly strike a
32 balance between demand, inventory level (considering availability, perishability and high/low patient turn-up as
33 the case maybe), supply and adequate return on investment. Onikoyi, Babafemi, Ojo and Aje, (2017) did not
34 find it necessary for continuous study on inventory management especially as excess inventory were indications
35 of wealth accumulation but recent events in terms price level changes, current health trend, general economic
36 and health implications
37

38 **2 c) Objective of the Study**

39 The broad objective of this study is to explore the inventory management and control systems being used by
40 selected health institutions, and its suitability and challenges in the Covid-19 era using the case of Anambra
41 state, Nigeria. To achieve this, this study specifically sought to:

5 B) STATEMENT OF PROBLEM

42 1. Ascertain the inventory management systems currently being used in health institutions and its level of
43 effectiveness. 2. Determine the extent to which the inventory management systems pose challenges to health
44 institutions in the COVID-19 era. 3. Examine the degree to which inventory management influence optimal
45 stock levels in the COVID-19 era.

46 3 d) Research Questions

47 The following research questions were addressed in this study:

48 1. What inventory management systems are currently being used in health institutions and how effective are
49 they? 2. To what extent do the inventory management systems pose challenges to health institution in the
50 COVID-19 pandemic period? 3. To what degree do the inventory management systems influence optimal stock
51 levels in selected health institutions in the COVID-19 era?

52 e) Hypotheses Development H O1 : The inventory management systems currently being used in the COVID-19
53 pandemic era are not significantly effective.

54 H O2 : The inventory management systems pose no significant challenges to health institutions in the COVID-
55 19 pandemic era.

56 H O3 : Inventory management systems (proxies by reorder level system, periodic review system and economic
57 order quantity model) do not significantly influence optimal stock levels in selected health institutions in the
58 COVID-19 era.

59 4 II.

60 Literature Review a) Conceptual Review i. Inventory Management and control systems Inventory management
61 (IM) simply refers to a process that consists of planning, organizing and controlling the flow of stock of materials
62 from their initial purchase unit through internal operations to the service point through distribution to clients or
63 customers. Agu, Obi-Anike and Eke (2016) defined inventory management as the sum total act of coordinating
64 the purchase, manufacturing and distribution functions with a view to meeting the marketing demands and
65 organizational needs of availing the product to its clients or customers. It equally refers to the collection
66 of activities that are put in place in order to ensure that customers have the demanded product or service.
67 Inventory management encompasses the development and management of inventory levels such as raw materials,
68 semi-finished materials and finished goods. The only way of making adequate supplies of goods is of COVID-19.
69 There are varied options which an institution can utilize in managing its inventory as a way of achieving improved
70 product and service delivery and efficiency (Wanyoike & Tundura, 2016). Prempeh (2016) opine that the current
71 assets constitute one of the fundamental assets in health institutions, it makes it very vital that the right quantity
72 of inventory is maintained at any given time to avoid stock out, expirations and excess holdings. This could be
73 the challenge with some health institutions that have been found with stock-out situation that they had to refer
74 patients to external sources when prescriptions are made.

75 5 b) Statement of Problem

76 The system of inventory management being used in some hospitals could have their number of challenges presently
77 due to corona virus (COVID-19) pandemic and its implication on health institutions. Some hospitals, thus, find
78 it hard to balance the supply of inventory with current demand though every hospital would want to have
79 enough inventories in medical supplies to satisfy the demands of its patients. Ideally, no hospital would want
80 to hold too much inventory to due to the associated inventory holding cost ?? Anichebe and Agu (2013), and
81 others have all examined the extent to which inventory management affect corporate performance of enterprises.
82 There are abundant local researches in Nigeria that determined the relationship between inventory management
83 techniques and firm profitability before the onset of corona virus disruptions in Nigeria. However, the studies
84 always assumed that the presence of adequate inventory management techniques already presupposes that there
85 is also an appreciable inventory control measure but the COVID-19 pandemic has faulted this assumption. To
86 fill this gap, this study was conducted to explore the inventory management system (proxies by re-order level
87 system, periodic review system and economic order quantity model) and inventory control (proxy by optimal
88 stock level) using selected registered health institutions in Anambra state as cases of reference.

89 when the inventory is properly managed. With this, they are made available to meet up with customers'
90 demand and the costs of over or under stocks are lowered in the process. IM refers to all the policies and
91 firm managerial processes of planning, organizing and controlling that relate to how the firm's stock level will
92 be kept or maintained at a level whereby the least cost will be incurred by the firm (Kwadwo, 2016). It is
93 primarily about how best to guarantee the availability of all input materials of production to the firm so that
94 the quantity of the stock in question is at a level where production is not interrupted with the barest operational
95 cost of holding the inventory without prejudice to operation efficiency (Eneje, Nweze, and Udeh, 2012). Onikoyi,
96 Babafemi, Ojo and Aje (2017) averred that IM, which they preferably called stock management, refers to the
97 business activity aspect that comprises the planning for purchase, receiving, handling, storing, and releasing of
98 inventory for use in production or distribution to customers. It is the science-based art of making sure that
99 just sufficient inventory stock is held by a firm for meeting with demand for them. Through IM, hospitals are
100 able to identify items of stock. In the management of inventory, the primary involvements range from being

101 able to specify the size and placement of stocked goods. The goal of IM therefore is to reach a balance in the
102 above requirements which will then result in an effective inventory control process that brings about optimal
103 inventory level. This is often a continuous process that is subject to constant change and therefore requires the
104 organization to respond to market changes on time. IM is used to create inventory purchase plan, and track
105 the existing inventories and their utilization (Muhayimana, 2015). It is impossible to talk of the effectiveness
106 of management in organizations without making reference to how effective the IM of the organization is since
107 inventory control is remains a central part of core management functions in organizations. The critical place of
108 inventory in a firm is so because inventory are resources which in addition to having an economic value have some
109 idle resources tied to it. This is why corporate managers in hospitals try to implement policies and plans that
110 will help them strike a balance between the benefits accruing from holding stock against the cost incurred from
111 holding same (Musau, Namusonge, Makokha and Ngeno, 2017). Attafu and Assefa (2018) simply defined IM as
112 the act and process that are undergone to record and observe stock level, estimate future request, and settle on
113 when and how to arrange for new order. It is this sort of process and procedures that enables firms to effectively
114 know how to go about the storage and replacement of stock and also how to keep a sufficient amount of stock
115 even as they minimize the cost. Inventory can be managed via re-order level system, periodic review system,
116 economic order quantity model, perpetual inventory system, etc. However, this study focuses on the systems
117 discussed below:

118 **6 Re-Order Level System**

119 According to Onuorah (2019), re-order level system is a way of managing inventory in such a way that a level at
120 which another order is made for inventory is set ahead of time and systematically complied with for every item of
121 inventory. Re-order level system often involves the operational use of two bins for inventory management whereby
122 re-order is made when inventory is exhausted from the first bin. The merits of the re-order level system is that
123 it allows the firm to respond to changes in demand and also enables the organization to generate replenishment
124 order automatically at the designated time simply by a comparison of inventory levels against re-order level.
125 However, the re-order system may be over-loaded if different types of inventories that are jointly used to produce
126 different items reach their re-order at the same time.

127 **7 Periodic Review System**

128 Periodic review system is a method of inventory management whereby stock levels are subjected to some fixed
129 interval reviews usually once every week, month or year, as the case may be. It can be seen as physical counting
130 method of IM where-in inventories are cross-checked and also updated at a fixed interval of time (Onuorah, 2019).
131 This system ensures that all inventory items are reviewed periodically which often provides more possibility of
132 eliminating outdated items or obsolete inventories. Orders for replenishment in periodic review system are follow
133 the same sequence. This singularly facilitates order of different items (of medical use for instance) and attracts
134 large quantity of discounts to the purchasing firm. However, the periodic review system does not fully enable
135 firms to respond to changes in consumption and so stock-out is more likely to occur especially when the usage
136 rate changes shortly after the review. Demand for the inventory item has to be constant before the appropriate
137 periodic review can be determined and this is often taxing.

138 **8 The system of Economic Order Quantity**

139 The economic order quantity theory suggests that the quantity of inventory that ought to be maintained by
140 corporate organizations is the stock level that provides the lowest total holding cost and acquiring cost (Mwangi,
141 2016). Economic Order Quantity Model is undeniably the most fundamental and also the bestknown inventory
142 decision model f which its origin is often dated back to the early 1900s. It is the ordering quantity that minimizes
143 the balance of inventory cost that exists between inventories re-orders costs and inventory holding costs (Ogbo &
144 Ukpere, 2014). The calculation of the EOQ Model is calculated using some assumptions as enlisted below, that;
145 Holding stock is certain and known, Ordering costs is constant, known and certain, rate of demand is known, unit
146 price is constant, and that there is no stock-outs . However, the assumptions seem not to be realistic in practice
147 and this system may not be suitable in health sector due to the unpredictable pattern of demand. However,
148 demand for medical supplies seem to be on the increase as more and more persons get sick due to covid-19 and
149 other related diseases. One notable weakness of this system is its failure to consider buffer stocks that should be
150 maintained to accommodate for variations in lead-time and demand for inventory.

151 ii. Inventory Control system (ICS) using optimal stock level According to the views of Wanyoike and Tundura
152 (2016), inventory control (IC) refers to a set of procedures and techniques that are used to oversee and control
153 ordering, storage and use of inventory resources. Onikoyi, Babafemi, Ojo and Aje (2017) defined inventory control
154 as the process of supervising the storage, the supply and the accessibility of items to ensure an adequate supply
155 of inventory without over or under supply. Inventory control is carried out to make sure that only the adequate
156 amount of inventory are available whenever and wherever required by customers. The distinction between IC
157 and IM is that whilst IM refers to all the activities that are done in the process of procuring, storing, selling,
158 disposing or using inventory while IC is a subset i.e a part of inventory management. However, managers assume
159 that once they are good with inventory management then the firm is safe in terms of the possibility of having

9 III. LEVERAGING INVENTORY MANAGEMENT AND CONTROL IN

160 under or excess stock level. This is where IC comes in to control the flow of inventory so that only the optimal
161 stock level would be maintained in the firm. The necessity for inventory control is that sufficient and appropriate
162 quantity of inventory is required each time in order to minimize the rate of stock-outs in the firm, and thereby
163 unnecessarily increasing the stock-out cost of the firm which is the cost incurred when the firm is not able to meet
164 current external and internal demand for inventory. IC often reveals the continuity chances of a hospital because
165 a hospital requires some level of stock that will keep the firm running which extant literature have enlisted as
166 cycle inventory, safety inventory, speculative demand inventory and dead inventory (Okerulu, 2019).

167 Onikoyi, Babafemi, Ojo and Aje (2017) was of the opinion that corporate managers require both reliable
168 and effective control of inventory resources so that the operating cost of the firm will be maximized for the
169 sake of remaining viably competitive. Inventory control practically enhances firm profitability since it can bring
170 about reduction in corporate operating costs that are associated with handling and storage of inventory. This
171 sis further justified by Iliemena and Amedu (2019) which opine that cost reduction strategies should be the
172 focal point of management if sustainable profit is aimed. Thus, it is against the undesirable reality of having
173 excessive inventory or having insufficient inventory that IC has become a very highly placed strategic management
174 technique. Excessive inventory ties down the funds of the organization, increases the possibility of inventory
175 deterioration, obsolescence and theft and also increases holding cost. Still, inappropriateness of insufficient stock
176 is such that it can interrupt the process of production and distribution of goods and services, especially for
177 hospitals and pharmaceuticals firms, proper inventory management and control cannot be over-looked. Thus,
178 hospitals are at all times expected to have an optimal stock level that both caters for customers' demand and
179 minimizes the cost of holding the inventory. Operational efficiency is therefore guaranteed by optimal stock level
180 which eliminates the possibility of stock-out, especially in emergency cases.

181 9 iii. Leveraging inventory Management and Control in

182 Health Institutions in the COVID-19 pandemic period Health institutions often make managerial efforts to reach
183 corporate decisions while providing strategies that are required for the effective management of the firm's resources
184 and this has not changed in the period of covid-19 pandemic. Certainly, the stock of medical supplies is one of
185 the institution's resources that critically need to be effectively managed and monitored especially considering the
186 economic times of corona virus and its health implications. Opinion exists that the COVID-19 era is associated
187 with global increase in demand for medical supplies which could possibly lead to stock-out while opinion also
188 exist that even though the pandemic has come with a lot health challenges but due to the poverty induced by the
189 virus and the fear of being compelled to isolation centers, sick persons would want to explore other means like
190 off-the-shelf drugs, herbal treatment and home therapies in managing their health issues, thus culminates into low
191 demand for medical supplies. Low demand for medical supplies put a lot of health institutions at risk of incurring
192 losses if not properly managed. This is due to the expiry nature of their products and services. On the other hand,
193 increase in demand for medical supplies in the COVID -19 pandemic periods if not properly managed could lead to
194 stock-out which has damaging effect on the sustainability and overall corporate performance. However, Dedunu
195 and Weerasinghae (2018), and, Iliemena, Goodluck, and Amedu (2020) are of the opinion that large inventory
196 bunch generates extra costs and this lends credence to the ever growing importance of inventory management
197 through which proper managerial attention could be paid to procedures, techniques or processes. This makes
198 inventory management a very crucial decision area for corporate success of health institutions in the pandemic
199 period. According to Bawa, Asamoah and Kissi (2018), IM is necessary mainly because it is one of the ways
200 for health institutions to minimize operating costs and funds Year 2022 () invested. This is by reducing the
201 cost of holding stock of inventory so as increase both profit and operating cash flow that simultaneously leads
202 to an improved corporate performance (Iliemena & Amedu, 2019). But the contributions of IM would equal to
203 nothing if proper ICS is not installed to help minimize the very inventory cost for the purpose of maximizing
204 profit margins. Additionally, IM is stronger and more effective when the inventory control procedures have been
205 properly implemented to facilitate an optimal stock level that allows for the best utilization of inventory resource.

206 No firm will ever be as efficient as it would want when the firm has not implemented sound IM and ICS that
207 would guarantee optimal level of medical supplies (Mwangi, 2016). It is through proper inventory management
208 of stock of drugs that hospitals or pharmaceutical firms can ensure that patient service level is considerably
209 adequate since insufficiency of stock is detrimental and excessive stock is wasteful. There could be reasons for
210 a hospital to hold excessive stock of materials more because of uncertainty in demand by patients for drugs
211 and related products and medical services. The sorts of things that are put into consideration during inventory
212 management and control processes are the modalities for the purchase of stocks that are commensurate with
213 both internal and external demands, changing usage patterns, seasonal variation, and monitoring for expiration
214 and pilferage. This therefore make it necessary that health institutions review their inventory management and
215 control systems periodically especially when there is massive global change like the changes currently induced by
216 the covid-19 pandemic, to ascertain the continuous suitability of the old system in the new structure of events.

217 **10 b) Theoretical Framework i. Theory of Economic Order**
218 **Quantity Model**

219 According to Mwangi (2016), the major and first proponent of the economic order quantity (EOQ) model was
220 Haris in 1913 that used the model to determine the optimal level of inventory. In line with the propositions of the
221 first proponent, economic order quantity entails the level of inventory that can both minimize inventory ordering
222 cost and also inventory holding cost. Ziukov (2015) put this in another way when the researcher submitted that
223 economic order quantity as a model is primarily meant to be used when determining an optimal ordering size
224 that will not only minimize ordering but will also minimize the sum of both carrying costs and ordering costs
225 of inventory. There are some assumptions that guide the application of this model to business realities. One of
226 the assumptions is that demand is certain, i.e. demand must equal annual total quantity that is ordered by the
227 firm at any point in time (Ziukov, 2015). Of essence, economic order quantity model puts into consideration a
228 tradeoff between ordering cost and storage cost while making policies and decisions on the quantity to order and
229 use as regards replenishing inventory items. Ordering a larger quantity of inventory practically reduces ordering
230 frequency and by implication reduces total ordering costs but would require a more spacious storage capacity and
231 increases holding or storage cost. There are holding costs that reduce ordering costs increase and vice versa until
232 there is a minimum point on the cost curve where the sum of ordering costs and holding costs will be barest with
233 the best optimal stock level. The costs that are incurred when an additional unit of inventory is procured is called
234 ordering costs carrying costs are the inventory costs that are incurred for storing or holding stock. According
235 to Mwangi (2016), economic order quantity is therefore determined by the intersection of carrying cost line and
236 ordering cost curve, where the total ordering cost equals the total carrying cost (Kumar, 2016).

237 The relevance of the theory to the study is that economic order quantity model is expected to be useful to
238 health institution in the Covid-19 pandemic era by providing an optimal order quantity of medical supplies that
239 minimizes total inventory cost in stock-out or expiration. This model is applied in inventory management and
240 control that is applicable to the management of not only raw materials but also work-in-progress and finished
241 goods. As a model for inventory control, EOQ model proposes that the purchase and storage of inventory, using
242 either periodic review system and re-order level system, should be carried out in such a way as to make sure that
243 there is no excess or under stocking at a given point in time. To this end, this theory makes a good argument
244 that supports the relationship between inventory control and management and this informed the need to anchor
245 the study upon the theory.

246 **11 ii. Lean Theory**

247 Lean theory proposes that inventory systems should be designed in a way that optimizes costs of inventory.
248 According to Atnafu and Assefa (2018), the lean theory augments the thoughts of Just-in-Time model and puts
249 buffer stock into consideration while it advocates for the minimization of wastages in production procedure. On
250 the note that inventory leanness significantly influences the productivity of health institutions (Iliemena, Goodluck
251 & Amedu, 2020), lean theory is of the view that optimal inventory level should be maintained. Through this
252 theory, the shortcomings of the economic order quantity model are considerably addressed because the lean theory
253 also borrows foundation from the EOQ model that solely seeks to optimize the quantity of any batch of inventory
254 ordered (Musau, Namusonge, Makokha & Ngeno, 2017). Lean theory just like JIT emphasizes that a pullbased
255 system should be put in place to help the organisation align the production and business processes throughout
256 the supply chain and inventory planning. Musau, Namusonge, Makokha and Ngeno (2017) submitted that, based
257 on the lean theory, firms can more successfully find ways of optimizing inventory by way of lean supply chain
258 systems and practices in order to achieve a better level of both asset utilization and customer satisfaction that
259 ultimately result in enhancement of organizational profitability, growth, and operational performance.

260 The relevance of lean theory to this study is because it presented inventory management practices as a vital part
261 of any supply chain regardless of whether the firm operates a product or service supply chain. In the present study,
262 hospitals majorly although not entirely operate a service supply chain but need to match demand and supply
263 in the supply chain while considering uncertainties in the market environment. Analyzing lean theory vis-à-vis
264 the inventory management of hospitals will reveal that most hospitals are beleaguered by ineffective inventory
265 control and the majority of the hospital do not utilize nor implement the basic inventory control concepts and
266 principles for various reasons (Atnafu & Assefa, 2018). Most hospitals rely on imported medical substances or
267 drugs coupled with unnecessary delays and communication problems which all jointly make the calculations of
268 lead time inaccurate. This is the reason lean theory is mostly advocated for as an inventory management tool
269 that best controls the flow of stock for optimal stock levels especially in the corona virus pandemic era.

270 **12 c) Extant Literature and gaps in studies**

271 A study carried out by Onuorah (2019) ascertained the effect of inventory management system on corporate
272 performance of a pharmaceutical company (Juhel Nigeria Limited) using descriptive research design. The study
273 sample was 41 full time staff of the company while data were gathered using a structured questionnaire. Data
274 gathered for the purpose of their study were tested using Pearson Product Moment Correlation Coefficient and
275 findings showed IMS significantly affects a firm's performance. The study only examined one firm, which makes
276 the finding less generalizable. (Iliemena and Amedu, 2019), studied the effect of inventory turnover period on

277 equity of 22 manufacturing companies quoted on the Nigerian stock exchange from the period 2012 to 2018 using
278 ex-post facto research design. Data from the financial statements of the companies were tested using multiple
279 regression analyses and evidence indicated that inventory turnover period has significant positive effect on equity
280 component. The implication of this to our present study is that health institutions are expected to turn over their
281 inventory of medical suppliers soon enough so it would not culminate to loss of equity capital investment. Sequel
282 to the evidence emanating from the manufacturing sector, this outcome may be said to be debatable. Anichebe
283 and Agu (2013) investigated the effect of inventory management on organizational effectiveness using three
284 companies (Yemenite, Hardis and Dromedas, and Nigerian bottling company) in Enugu State using descriptive
285 research method on a sample of 248. The data gathered using questionnaires and interviews were tested using
286 Pearson product moment correlation co-efficient and regression method. Evidence emanating from the study
287 showed good inventory management is significantly related to organizational effectiveness. By way of limitation,
288 the study failed to gather evidence relating to challenges in their inventory management system. Ogbo and Ukpere
289 (2014) also using a descriptive research design, evaluated the relationship between effective IM and organizational
290 performance as a case study of 7-up bottling company Nigeria. The study sample was made up of 83 respondents
291 while data gathered were tested using Chi-square method. Findings from this study revealed a relationship
292 between operational feasibility and IM and that flexibility in inventory management is key to good corporate
293 performance. Critically, only one organisation was studied by the researchers which made the findings less
294 generalizable. Furthermore, Koin, Cheruiyot and Mwangangi (2014) investigated the effect of IM on performance
295 of manufacturing sector using 56 out of 459 business process owners. The descriptive study gathered its data
296 using questionnaires. The outcome of the study revealed that IM and supplier relation both has significant effect
297 performance even though order management was found to have just a mild effect. The study however, failed
298 to consider the effect of inventory management system on optimal stock levels of the selected firms. Edwin and
299 Florence (2015) in their study assessed the effect of IM on profitability of the 6 cement manufacturing firms listed
300 on Nairobi stock exchange in Kenya from 1999-2014 using secondary data from annual reports. The ordinary
301 least square regression results in multiple analyses revealed a negative relationship existing between inventory
302 turnovers, storage cost and conversion period with profitability as measured using return on asset. Thus, since
303 the system of inventory control in manufacturing firms differs from that of hospitals, there is need to carryout a
304 similar study using evidence from hospitals. Also in Kenya, Mwangi (2016) further investigated IM, profitability
305 and operating cash flow 6 beer distribution companies in Nairobi for a ten years period ranging from 2006 to
306 2015. The secondary data gathered for the study was analyzed using ordinary least squares regression analyses
307 and findings revealed a significant relationship between IM, profitability and operating cash flows. By way of
308 criticism, the study focused on inventory management practices such as just in time and material requirement
309 planning and did not consider re-order level system, periodic review system and economic order quantity model.
310 In a related study carried out in Nigeria, Etale and Bingilar (2016) focused

311 13 Global Journal of Management and Business Research

312 Volume XXII Issue VIII Version I Year 2022 () on examination of IM and profitability of three listed breweries
313 on Nigerian stock exchange from 2005 to 2014. The data for the study were obtained from the annual reports of
314 the companies while analyses were carried out using multiple regression methodology. Evidence revealed in line
315 with most other studies that IM has significant positive effect on profitability. However, the study derived its
316 evidence further emanated from brewery companies and outcome may differ from the health sector. The findings
317 do not fit the realities and peculiarities in the health sector. Agu, Obi-Anike and Eke (2016) in their own study
318 evaluated the effect of ICS on the productivity of Nigerian manufacturing firms using a sample of 285 respondents.
319 The descriptive study generated data using the questionnaire method and statistical analysis were carried out
320 on the data using linear regression coefficients. Findings showed ICS have significant positive relationship with
321 productivity. Also, demand management was found to have a positive relationship with customer satisfaction.
322 Aligning this with our present study, the finding implies that when changes in demands for medical supplies in
323 the COVID-19 pandemic era, are properly managed, patients issues will be well addresses and thus image of the
324 hospital boosted while ensuring continuous patronage. As a limitation however, the evidence emanating from
325 manufacturing firms may need to be reexamined before it can be said to also apply to the health sector. Onikoyi,
326 Babafemi, Ojo and Aje (2017) evaluated the IM practices of a Nigerian cement producing company, Lafarge
327 Africa (WAPCO) plc using the survey design on annual reports from 2005 to 2015. Regression analyses on the
328 gathered data indicated that significant relationship exists between costs of goods sold and value of inventory in
329 stock. This study was however, conducted before the inception of the COVID-19 pandemic in 2019 and it may
330 have affected the current position. Also, the researchers adopted a case study design where only one firm was
331 studied. This reduced the generalizability of the findings.

332 Still emphasizing on how relevant IM is to corporate success, Bawa, Asamoah and Kissi (2018) conducted
333 an evaluation of IM and performance of 14 companies listed on the stock exchange of Ghana from 2007 to
334 2016. Regression and correlation co-efficient were used on relevant financial statement information and findings
335 showed no significant effect of IM on selected profitability measures over the period. This evidence even though
336 contradicted earlier views, failed to cover the aspect of IC using optimal stock levels. As a remedy, Sporta (2018)
337 in his study evaluated the IC techniques of medical supply agencies in Ghana using descriptive research design on
338 a population of 100 employees. The result of the correlations and the multiple regression analysis carried out on

339 the qualitative and quantitative data revealed IC techniques significantly affect performance. Thus, the findings
340 are not fittingly applicable to health institutions in Nigeria given the peculiarities.

341 **14 III.**

342 **15 Methodological Steps**

343 This study adopted a descriptive research design to enable the researchers have a comprehensive picture of
344 the phenomenon of interest by surveying the opinions of a sample that is derived from our target population.
345 The full time staff of procurement, stores, emergency, accounting and finance departments (PSEAFD) of seven
346 health institutions formed the study population as shown in table ??1 below: = Sampling error (5%), 1 =
347 Constant. From the calculation after approximation, $n = 66$. For the determination of the stratum size, the
348 formula expressed underneath was applied and calculated in Table ?? We obtained primary data for the study
349 using structured and unstructured questionnaires administered to 66 staff as comprised above in table ??2. The
350 structured questionnaire was designed in using five-point-likert scale as strongly agree, agree, neutral, disagree
351 and strongly disagree. To rightly make sense of the research constructs, the responses were ordered and numbered
352 accordingly as 5,4,3,2 and 1. The internal consistency of the questionnaire was determined by Cronbach alpha
353 that produced a Cronbach co-efficient of 0.81 which made the constructs reliable since the coefficient of reliability
354 exceeded the threshold of 0.7. The test of first and second hypotheses was conducted with the use of Chisquare
355 while the third hypothesis was tested using Spearman Ranked Order Correlation Coefficient which is calculated
356 with the aid of Statistical Package for Social Sciences (SPSS). The choice for this particular statistic for test of
357 hypothesis three was because the collected data were ranked and required a non-parametric tool to produce a
358 more reliable result. The questionnaire was administered to sixty-six (66) respondents during the field survey
359 by the researcher. However 63(95.45%) were well filled and returned while 3 (4.55%) were not returned. 4.4
360 presented responses to the question of the extent inventory management systems pose a challenge to health
361 institution in the covid-19 pandemic period. The summary table above shows that 15 (23.8%) of the respondents
362 were of the opinion that their inventory management system poses very little challenge to their hospital in the
363 pandemic era. 11 representing 17.5% were of the view that the extent of challenge is little. 7 respondents (11.1%)
364 were undecided on the extent of challenge currently being posed by their inventory management . 12 (19%)
365 opined that the extent of such challenge is great while the rest of the 18 respondents (28.6%) claim that the
366 extent of challenge is very great. The result above shows that the Pearson's Chi-Squared Statistical Test result
367 is significant ($X^2 = 0.6377$, p-value =0.001). To further support the statistical position of the above result, the
368 Likelihood Ratio of the test is 0.6132 with a p-value of 0.003. Since the p-value of the test (0.001) is less than 0.05,
369 the null hypothesis was rejected. Consequently, the researchers concluded that IMS pose significant challenges
370 to health institutions in the COVID-19 pandemic era at 5% level of significance. The findings of the study are in
371 tandem with the outcome of the studies earlier carried out by iii. Hypothesis III H O3 : Inventory management
372 systems (proxies by reorder level system, periodic review system and economic order quantity model) do not
373 significantly influence optimal stock levels in selected health institutions in the COVID-19 era. The output of the
374 test is given below: Order Quantity Model increases optimal stock level by 0.267, 0.368 and 0.342, respectively.
375 Since the p-value of the test (0.001) is less than 0.05, the null hypothesis was therefore rejected. This led to
376 the conclusion that inventory management systems (proxies by re-order level system, periodic review system and
377 economic order quantity model) significantly influence optimal stock levels in selected health institutions. This
378 result is in agreement with the findings of Iliemena, Ijeoma and John-Akamelu (2019). Also in line with the
379 findings of this study is the works of Edwin and Florence (2015), Ogbo and Ukpere (2014), and Anichebe and
380 Agu (2013).

381 **16 b) Analysis of Respondents' level of management**

382 **17 e) Theoretical contribution of Findings and application to 383 wider research**

384 Generally, the outcome of this study reemphasized the Lean Theory and lean practice for health institutions as in
385 proposed by earlier researches. The theoretical application of the lean theory in medical supplies management was
386 earlier highlighted by Iliemena, Goodluck and Amedu (2020) which viewed inventory management practices as a
387 vital part of any supply chain regardless of whether the firm operates a product or service supply chain. In the
388 present study, hospitals majorly although not entirely operate a service supply chain but need to match demand
389 and supply in the supply chain while considering uncertainties in the market environment like the COVID-19
390 pandemic.

391 V.

392 **18 Conclusion, Implications and Recommendations**

393 The overall objective of inventory management is to maintain stock level in a way that reduces cost of inventory.
394 The optimum level of stock depends on some factors which arise from the interest of the management to establish
395 an overall policy for stock taking. An effective inventory management strategy enhances optimal stock level and

396 ensures that the right quantity and quality of the relevant stock is available at the right time and at the right
397 place. Thus, the results of the study provided empirical evidence for managers of health institutions and thus the
398 conclusion that inventory management, proxy by Re-order Level system, Periodic review system and Economic
399 Order Quantity Model, positively influence optimal stock level of medical supplies in health institutions using
400 the case of selected hospitals in Anambra state but currently pose significant challenges in cost minimization
401 due to COVID-19 pandemic. This implies that inventory management systems of health institution urgently
402 need to be modified to properly fit the unpredictable changes in demand and supply of medical supplies in the
403 pandemic era. In other words, there is need for hospitals to adopt flexible systems of inventory management as
404 it suits the economic and medical situation of the time. Consequent to the above, this study recommends that;
405 1. Management of health institutions should strive to ensure that the right stock is kept in their warehouses
406 to hedge against excessive holding cost of medical supply inventories and stock-outs which could lead to loss of
407 life/ patronage. 2. Given that the utilization of Re-order Level System, Periodic Review System and Economic
408 Order Quantity Model positively influences optimal stock level, management of hospitals should diversify their
409 inventory management system to suit specific needs of considering movements in demand and supply.

410 19 Management of hospitals and other health

411 institutions should closely monitor and regulate their inventory system as a way of ensuring corporate
412 sustainability due to its influence on performance.

413 20 a) Suggestions for Further Studies

414 Given the limitation of our study based on the scope and area, future research may attempt same topic in such
415 a way that other methods of inventory management and control are subjected to similar tests. Flowing from our
research outcome, the following topics of research are suggested for further studies:¹

Figure 1:

Figure 2:

Figure 3:

31

SN/	Name of Health Institution	No of Staff in PSEAFD
1.	Izunna Hospital, Amansea Junction, Awka	12
2.	Amen Specialist & Diagnostic Clinic, Amaenyi, Awka	12
3.	Crest Specialist Hospital, Enweana, Awka	9
4.	First Hospital and Maternity, Umuokpu Awka	10
5.	Graceland Specialist Hospital & Maternity, Old INEC Road, Awka	12
6.	Okoye Specialist Hospital, Emma Nnaemeka Street, Awka	9
7.	Eldorado hospital, Awka	11
	Total	74

Source: Field Survey, 2022.

Figure 4: Table 3 . 1 :

32

????????????? ???? ?????????????? ?????????? ???? ?????? × ??????????????
? ?????????????????? ?????????? ?????????????????????? ??????????????
?????????????

Figure 5: Table 3 . 2 :

41

Response	Frequency	Percentage (%)
Well Filled in Questionnaires	63	95.45
Unreturned in Questionnaires	3	4.55
Total	66	100

Source: Field Survey 202

Figure 6: Table 4 . 1 :

4

Year 2022

50

Volume XXII Issue VIII Version I

)

(

Global Journal of Management and Business Research	Level	Low	2: Respondents' Level of Management Frequency	Percentage (%)
	Middle	26		41.3
	Top	23		36.5
	Total	63		100.0

Source: Field Survey 2022

Figure 7: Table 4 .

4

2 above shows that among the

respondents, 14 (representing 22.2%) are low level managers. 26 respondents (representing 41.3%) are
c) Analyses of Research Questions

middle level managers while 23 (representing 36.5%) are top level managers.

Figure 8: Table 4 .

43

Response	Frequency	Percentage (%)
Re-order level system	11	17.5
Periodic review system	25	39.7
Economic order quantity model	21	33.3
Others	6	9.5
Total	63	100.0

Source: Field survey, 2022

Table 4.3 above summarized the responses to the research question of what inventory management

systems are currently being used in health institutions

and its efficiency rates. The above table shows that 11

respondents (17.5%) pointed that they use Re-order-

level system most frequently in the COVID-19 pandemic

period. 25 of the respondents representing (39.7%) opted for Periodic Review System; 21 (33.3%) use

Economic Order Quantity; while 6 (9.5%) use other

inventory management systems which are currently not

of concern to the researchers.

Figure 9: Table 4 . 3 :

44

Response	Frequency	Percentage (%)
Very Little Extent	15	23.8
Little Extent	11	17.5
Neutral	7	11.1
Great Extent	12	19.0
Very Great Extent	18	28.6
Total	63	100.0

Source: Field survey, 2022

Table

Figure 10: Table 4 . 4 :

45

Response	Frequency	Percentage (%)
Very Little Degree	10	15.9
Little Degree	3	4.8
Neutral	12	19.0
Great Degree	11	17.5
Very Great Degree	27	42.9
Total	63	100.0

Source: Field survey 2022

Table 4.5 provided a summary of the responses to the research question of the degree to which inventory management systems influence optimal stock

levels in the COVID-19 era. The table above shows that 10 (15.9%) of the respondents believe that the degree to

which inventory management system enhances optimal

stock level is very little. 3 respondents (4.8%) opted for

little degree; 12 (19%) were undecided; 11 respondents

(17.5%) opined that there is a great degree of influence

of inventory management on optimal stock level. Finally, 27 respondents (42.9%) indicated that the degree of such influence is very great.

d) Test of hypotheses

i. Hypothesis I

H O1 : The inventory management systems currently be

used in the COVID-19 pandemic era are not significantl

Figure 11: Table 4 . 5 :

46

	Value	Df	Asymp. (2-sided)	Sig.
Pearson Chi-Square	15.336 a	16	.060	
Likelihood Ratio	9.443	16	.071	
Linear-by-Linear Association	1.911	1	.167	
N of Valid Cases	63			

Source: Field survey 2022

Figure 12: Table 4 . 6 :

4

the inventory management systems being used in selected health institutions in Anambra state are not effective in the COVID-19 pandemic period at 5% level of significance.

ii. Hypothesis II

H O2 : the inventory management systems pose no significant challenge to health institutions in the COVID-19 pandemic era. Below is the output of the test:

Figure 13: Table 4 .

47

	Value	df	Asymp.	Sig.	(2-sided)
Pearson Chi-Square	0.6377 a	8		.001	
Likelihood Ratio	0.6132	8		.003	
Linear-by-Linear Association	0.8332	1		.074	
N of Valid Cases	63				

[Note: a. 10 cells (66.7%) have expected count less than 5. The minimum expected count is .44. Source: Field Survey 2022]

Figure 14: Table 4 . 7 :

48

				Re-Order	Periodic	Economic	Optimal
				Level	Review	Order	Stock
				System	System	Quan-	Level
Re-Order	Level	Correlation Coefficient		1.000			
System		Sig. (2-tailed)		.			
		N		63			
Periodic	Review	Correlation Coefficient		-.011	1.000		
System		Sig. (2-tailed)		.931	.		
		N		63	63		
Economic	Order	Correlation Coefficient		.895 **	.029	1.000	
Quantity	Model	Sig. (2-tailed)		.000	.822	.	
		N		63	63	63	

Figure 15: Table 4 . 8 :

417 [Ziukov ()] 'A literature review on models of inventory management under uncertainty'. S Ziukov . *Verslo Sistemos irEkonomika* 2015. 5 (1) p. .

418 [Iliemena et al. ()] 'An Assessment of the Practicability of Lean Accounting in Healthcare Sector: Evidence from Anambra State'. R Iliemena , Goodluck , Amedu . *Nigeria. Test Engineering and Management* 2020. 81 (1) p. .

419 [Kumar ()] 'Economic Order Quantity (EOQ) Model'. R Kumar . *Global Journal of Finance and Economic Management* 2016. 5 (1) p. .

420 [Iliemena et al. ()] 'Effect of cash conversion cycle on capital structure: empirical evidence from quoted manufacturing firms in Nigeria'. R O Iliemena , N B Ijeoma , C R John-Akamelu . *Journal of Global Accounting* 2019. 6 (1) p. .

421 [Eneje et al. ()] 'Effect of efficient inventory management on profitability: Evidence from selected brewery firms in Nigeria'. C Eneje , A Nweze , A Udeh . *International Journal of current Research* 2012. 4 (1) p. .

422 [Sporta ()] 'Effect of Inventory Control Techniques on Organization's Performance at Kenya Medical Supplies Agencies'. F O Sporta . *International Journal of Business & Management* 2018. 6 (3) p. .

423 [Mwangi ()] *Effect of Inventory Management on Firm Profitability and Operating Cash Flows of Kenya Breweries Limited, Beer Distribution Firms in Nairobi County. Unpublished MSc. Project Submitted to School of Business*, L Mwangi . 2016. University of Nairobi

424 [Anichebe and Agu ()] 'Effect of Inventory Management on Organizational Effectiveness'. N A Anichebe , O A Agu . *Information and Knowledge Management* 2013. 3 (8) p. .

425 [Agu et al. ()] 'Effect of Inventory Management on the Organizational Performance of the Selected Manufacturing Firms'. O Agu , H Obi-Anike , C Eke . *Singaporean Journal of Business Economics, And Management Studies* 2016. 5 (4) p. .

426 [Onuorah ()] *Effect of Inventory Management on the Performance of Manufacturing Firms: A Study of Juhel Pharmaceuticals Nigeria Ltd. Unpublished Research Project Submitted to Department of Accounting*, N Onuorah . 2019. Awka. Nnamdi Azikiwe University

427 [Koin et al. ()] 'Effect of Inventory Management on the Supply Chain Effectiveness in the Manufacturing Industry in Kenya: A Case Study of Tata Chemicals Magadi'. V R Koin , G Cheruiyot , P Mwangangi . *International Journal of Social Sciences Management and Entrepreneurship* 2014. 1 (2) p. .

428 [Onikoyi et al. ()] 'Effect of Inventory Management Practices on Financial Performance of Larfage Wapco Plc'. I Onikoyi , E Babafemi , S Ojo , C Aje . *Nigeria. European Journal of Business and Management* 2017. 9 (8) p. .

429 [Iliemena and Amedu ()] 'Effect of standard costing on profitability of manufacturing companies: study of Edo state Nigeria'. R O Iliemena , J M A Amedu . 10.7176/JRDM/5303. *Journal of Resources Development and Management* 2019. 53 (3) p. .

430 [Bawa et al. ()] 'Impact of Inventory Management on Firm Performance: A Case Study of Listed Manufacturing Firms in Ghana'. S Bawa , G Asamoah , E Kissi . *International Journal of Finance and Accounting* 2018. 7 (4) p. .

431 [Okerulu ()] *Inventory control system on the logistics cycle of selected retail outlet in Anambra State. An Unpublished Research Project Submitted to Department of Accountancy*, S O Okerulu . 2019. Awka. Nnamdi Azikiwe University

432 [Muhayimana ()] 'Inventory Management Techniques and Its Contribution on Better Management of Manufacturing Companies in Rwanda: Case Study: Sulfo Rwanda Ltd'. V Muhayimana . *European Journal of Academic Essays* 2015. 2 (6) p. .

433 [Etale and Bingilar ()] 'The Effect of Inventory Cost Management on Profitability: A Study of Listed Brewery Companies in Nigeria'. L M Etale , P F Bingilar . *International Journal of Economics, Commerce and Management* 2016. 4 (6) p. .

434 [Dedunu and Weerasinghae ()] 'The Effect of Inventory Management on Company Performance Reference to Listed Manufacturing Companies in Sri Lanka'. H H Dedunu , I M Weerasinghae . *International Journal of Management Sciences and Business Research* 2018. 7 (7) p. .

435 [Kumar and Bahl ()] 'The Effect of Inventory Management on Organizational Performance'. P Kumar , R N Bahl . *International Journal of Innovative Science, Engineering &Technology* 2014. 1 (4) p. .

436 [Musau et al. ()] 'The Effect of Inventory Management on Organizational Performance among Textile Manufacturing Firms in Kenya'. E G Musau , G Namusonge , E N Makokha , J Ngeno . *International Journal of Academic Research in Business and Social Sciences* 2017. 7 (11) p. .

437 [Edwin and Florence ()] 'The Effect of Inventory Management on Profitability of Cement Manufacturing Companies in Kenya: A Case Study of Listed Cement Manufacturing Companies in Kenya'. S Edwin , M Florence . *International Journal of Management and Commerce Innovations* 2015. 3 (2) p. .

20 A) SUGGESTIONS FOR FURTHER STUDIES

474 [Ogbo and Ukpere ()] 'The Impact of Effective Inventory Control Management on Organisational Performance:
475 A Study of 7up Bottling Company Nile Mile Enugu'. A Ogbo , W Ukpere . *Nigeria. Mediterranean Journal*
476 *of Social Sciences* 2014. 5 (10) p. .

477 [Kwadwo ()] 'The Impact of Efficient Inventory Management on Profitability: Evidence from Selected Manu-
478 facturing Firms in Ghana'. B P Kwadwo . *International Journal of Finance and Accounting* 2016. 5 (1) p.
479 .

480 [Prempeh ()] 'The impact of efficient inventory management on profitability: evidence from selected manufac-
481 turing firms in Ghana'. K B Prempeh . *International Journal of Finance and Accounting* 2016. 5 (1) p.
482 .

483 [Atnafu and Assefa ()] 'The impact of inventory management practice on firms' competitiveness and organiza-
484 tional performance: Empirical evidence from micro and small enterprises in Ethiopia'. D Atnafu , B I Assefa
485 . *Cogent Business & Management* 2018. 5 (1) p. .

486 [Wanyoike and Tundura ()] D Wanyoike , L Tundura . *Effect of Inventory Control Strategies on Inventory Record*
487 *Accuracy in Kenya Power Company*, 2016. 5 p. .

488 [Mensah ()] 'Working Capital Management and Profitability of Firms: A Study of Listed Manufacturing Firms
489 in Ghana'. J M K Mensah . *International Journal of Economics* 2015. 1 (2) p. . (Business and Finance)