

1 Capital Structure in Mena Region: A Panel Data Analysis

2 Meryem Bellouma

3 *Received: 14 December 2018 Accepted: 4 January 2019 Published: 15 January 2019*

4

5 **Abstract**

6 In this paper we make an attempt to provide some insight into the capital structure choice of
7 the MENA region for the period 2006-2015. We develop a dynamic panel data model that
8 explicitly takes into account the determinants of capital structure choice. It has been
9 concluded that factors such as size, profitability, asset tangibility and rating have significant
10 impact on the leverage structure by firms in the MENA region context.

11

12 **Index terms**— determinants of capital structure choice, MENA region.

13 **1 Introduction**

14 The study of the structure of the capital has constituted one of the main debates about the finance of a firm.
15 Modigliani and Miller (1958) were the first to lead a true reflexion on these themes. These authors have shown
16 that in the presence of perfect financial markets and under some hypotheses, the value of the firm is independent
17 of the structure of its capital.

18 Questioning the assumptions of the neutrality of the structure of the capital showed that the capital structure
19 is influenced by several factors, including taxation which pushed Modigliani and Miller (1963) to conclude that
20 the value of the firm is an increasing function of its level of debt. They also maintain that resorting to debt results
21 in a tax credit procreated by the tax deductibility of interest charges. However, the excessive appeal to debt can
22 procreate costs of bankruptcy. In that case, optimum financial structure results from arbitration between the tax
23 advantage of the debt and the costs of a potential bankruptcy.

24 However, this arbitration does not exist anymore by including the taxation of the individuals. In this context
25 Miller (1977) comes back to the initial conclusions of Modigliani and Miller (1958) and supports again the idea of
26 the neutrality of the capital structure.

27 The discussion about capital structure has continued and given rise to the emergence of new theories which
28 deal with the topic of capital structure. Leaving the model of agency, the optimum of the capital structure results
29 from a level of target debt which allows to arbitrate between the tax benefits of debts and the minimization of
30 the costs of agency of equity capital, and the costs of financial distress such as the costs of bankruptcies as well
31 as the increase of the costs of agency of debts. That is The Trade-Off Theory.

32 In addition, the introduction of the signaling of financial decisions effects feeds more research on the effect of
33 the asymmetry of information in the analysis of financing modalities. Based on the argument of signaling, Myers
34 (1984) suggests that firms prefer the internal financing and take precedence in the choice of the financing sources.

35 They first favour self-financing, then debt and finally the increase of capital (Mayer and Majluf on 1984).
36 This hierarchy depends on the objective of the firm leader. It is the pecking order theory (P.O.T). This theory
37 of hierarchy of the sources of financing therefore rejects the hypothesis of the existence of an optimum capital
38 structure.

39 A third theoretical frame, which refers to the climate of the market to determine the capital structure of a firm,
40 is the Market Timing theory. According to this new frame of analysis, business companies issue titles when the
41 conditions of the market are favourable, otherwise buy them back or get into debt. So, Baker and Wurgler (2002)
42 conclude that the capital structure is the result of the accumulation of decisions taken previously according to
43 current stock exchange context.

44 The validity or rejection of these explicative theories of the decisions of financing constitutes today, a debate
45 of empirical order. Indeed, empirical studies concerning the determinants of the capital structure are characterised
46 by the fact that there is not a total structural theoretical model.

6 I. TAX AND THE MAXIMUM LEVERAGE RATIO

47 However, they introduce a succession of corresponding hypotheses with different theories in the field as those
48 we have mentioned before. This leads to a big number of possible determiners, which effects on the debt can
49 vary from one theory to another.

50 The present article has as objective to give theoretical and empirical valuation of the determiners of behaviors
51 of the firms of the MENA region in the choice of their financial structure. In order to do that, we are going to
52 undertake in a first stage literature review relating to the determiners of financial structure. In a second stage, we
53 are going to introduce followed methodology, hypotheses and choice of variables. Then, we are going to introduce
54 the empirical results. Finally, we will end this article with a general conclusion.

55 2 II.

56 3 Theoretical Literature Review

57 Following basic jobs of ??iller (1958, 1963) on the structure of the capital of firms, different theories have emerged
58 to release notably the hypothesis of perfect market. Two big theories distinguish themselves: the (trade-off theory)
59 and the (pecking order theory). The former is based on the notion of arbitration between the potential earnings
60 of the debt and the costs which are linked. The latter however, is based on the hypothesis that the firm follows a
61 hierarchy of financing according to their need in external funds. Referring to the climate of the financial market,
62 another theory has emerged appeared to explain the financial structure of a firm. a) Modigliani and Miller (1958)

63 4 theory

64 The article of Modigliani and Miller (1958) was the first to found establish the frame of an analysis of the structure
65 of the capital of the firm. They maintain that, in a world without tax, without cost of transaction, without cost
66 of agency and under the hypothesis of the efficiency of markets, the value of the firm is not affected by the choice
67 of a structure of financing.

68 Their model assumes hypothesis that, in the presence of a perfect market where the information between
69 the economic agents is symmetrical, all forms of financing of the firm are identical. Thus the neutrality of the
70 capital structure. ??ama and Miller (1972) and Miller (1977) also confirmed the independence of the decisions
71 of financing and those of investments.

72 The hypothesis of Modigliani and Miller (1958), was proved by other empirical studies. Indeed, Song (2009)
73 proved, over the period between 1983-1997, that the American firms value does not improve long and short -term
74 debts because of the efficiency of the bond market.

75 However, the existence of imperfections on the market such as the problems of opposing selection and of
76 moral vagary, the conflicts of agency?., have created obstacles to the access of a firm to the external financing
77 (Vermoesen and al., 2013).

78 So, with the appearance of the theories of the determiners of financial structures of the firm, the hypothesis
79 of independence was rejected.

80 5 b) The Trade-Off Theory

81 With reference to the notion of arbitration, The theory of optimum ratio of debt registered following jobs of
82 Modigliani and Miller (1958), and taking into account the different decisive factors such as taxation (Modigliani
83 and Miller, on 1963) as well as the costs of bankruptcy (Myers, 1984) and the costs of agency (Jensen and
84 Meckling, 1976;Jensen, 1986). In this context the optimum ratio of debt results from the arbitration between the
85 tax savings and the cost of failure.

86 6 i. Tax and the maximum leverage ratio

87 A consideration of the firm tax, pushed Modigliani and Miller (1963) to admit that the value of a firm with debt
88 is equal to the value of a debt free augmented by the current value of economy of tax linked to the deductibility
89 of the expenses of interest: firms tend to resort financing exclusively by debts.

90 According to Faccio and Xu (2013) taxation is an important of determiner the politics of financing. Its influence
91 is significant. ??ama and French (1998) find that the effect of the deduction of the expenses of interest on the
92 value of the firm is negative, contradicting therefore, the predictions of Modigliani and Miller (1963). However,
93 Wu and Yue (2009) tested a sample of 2182 Chinese firms to study the effect of an endogenous variation of the
94 rate of taxation on the decision of financing. They found a positive relation between the debt and the rate of tax.
95 Similarly, Buettner and al. (2009) studied a panel of multinational German firms over a period of seven years
96 ??1996) ??1997) ??1998) ??1999) ??2000) ??2001) ??2002) ??2003) and proved a positive relation between the
97 effects of taxation and local and external debt.

98 Nevertheless, when studying the determiners of the ratio of debt in France, in Germany and the United
99 Kingdom, Antoniou and al. (2002), did not assert a significant effect of the tax on debts. Ang and Megginson
100 (1990) came to the same conclusions and showed that taxation does not have a decisive influence on the debt
101 ii. Bankruptcy and optimal capital structure Modigliani and Miller (1963) maintain that with consideration
102 of the taxation, and notably of the deductibility of the interest charges of the result liable to tax, the value
103 of the indebted firm is always superior to that of the not debt business company, which encourages firms to

104 resort exclusively to debt as a means of financing. Undoubtedly, this exclusive appeal to the debt augments the
105 probability of defect. Ross (1977) showed that the value of the society augments with its lever and the importance
106 of the costs of bankruptcy. He put forward that the debt of a firm is going to draw away costs linked to the risk
107 of fault. It is direct costs (social costs) and indirect costs (loss of client and confidence).

108 Harris and Raviv (1990) prove that the financing by debt assures that the leaders are encouraged to make
109 profitable decisions and not their own function of utility, and it is to minimize their probability of fault. Tarazi
110 (2013) also noticed that the cost of financial distress is not significant on the leverage.

111 **7 iii. Conflict of interest and capital structure**

112 Jobs resulting of Alchian and Demsetz (1972), Jensen and Meckling (1976) and Fama (1980) were at the origin
113 of the agency theory. They highlight the conflicts by contrasting the shareholders to the leaders concerning the
114 separation between the property and the control of firms. This theory is interested in the study of a contractual
115 relation which links the shareholders called the principal to the leaders called agents. Indeed, the latter have
116 different functions of utility and each of them acts in order to maximize their utility.

117 Seeing that the relation of agency is most often of a controversial nature, it can generate specific costs called
118 the costs of agency (Jensen and Meckling (1976) and Jensen (1986)). These costs are hired on one hand by the
119 shareholders regarding the leaders (costs of agency of equity capital) these costs are procreated by the control
120 which the shareholders have to perform on the leaders to line up their interests. On the other hand, the costs
121 procreated by the creditors regarding the shareholders (agency costs of debt), which are generated by the exercised
122 control of the creditors to limit the expropriation behaviour of the shareholders and leaders.

123 The debt appears to be tool to reduce the costs of agency of the equity capital. However, this appeal to debt
124 causes agency costs of debts.

125 Setayesh and al. (??012) studied the determiners of the capital structure according to the theory of agency.
126 They proved that the strategically mechanisms of the firm, including the concentration of property and the
127 independence of members of the administrative council, do not have a significant effect on the leverage of the
128 studied firm. However, they showed a positive and a significant relation between the costs of agency and the
129 leverage. The Results also reveal that the ratio of assets returns, remuneration and Tobin's Q have a significant
130 effect on the level of debt.

131 **8 c) The Pecking Order Theory**

132 Based on the consideration of the asymmetry information, the theory of the financing organized into a hierarchy
133 finds its origins in jobs of ??onaldson (1961) and developed by Myers (1984) and ??yers and Majluf (1984).
134 According to this theory, firms take precedence in the choice of the sources of financing. This choice depends on
135 the objective of the leader of the firm. If the leader acts in the interest of the shareholders, he is, therefore, going
136 to adopt a decreasing financial hierarchy begun by self-financing, then debt and finally capital increase (Mayer
137 and Majluf, 1984). In case the leader acts in his own interest, the leader favors selffinancing first, then the debt
138 and the increase of capital as a last resort.

139 Several recent theoretical and empirical developments, tried to prove the hypothesis of hierarchy of financing.
140 Fattouh and al. (2008) show, through an empirical study on a sample of American firms, that the least cost
141 effective firms, turn to the debt, given that they are unable to self-finance.

142 **9 d) The Market Timing Theory**

143 The Market Timing Theory assumes that the modality of the choices of financing depends on the market climate.
144 In addition, firms issue titles only when the stock prices are high and / or in favorable market conditions and
145 buy them back by issuing debts in the opposite case. The context of this theory is initially introduced by Baker
146 and Wurgler (2002). They conclude, in their research work, that the structure of the capital results from the
147 successive will of "Timer" on the market and not from a conscious choice of a target ratio and a sustainable
148 financial structure due to the emission of actions.

149 **10 III.**

150 **11 Methodology and Database a) The sample**

151 Our study will be undertaken on a sample of firms of the MENA countries. The sample is composed of 216
152 unquoted and quoted firms. Banks, insurance companies, leasing companies, closed-end or variable capital or
153 venture capital Investment companies, firms of factoring and newly quoted firms, all were excluded from our
154 study taking account of the peculiarities of their debt politics. Indeed, the determination of cost financing of
155 debt should be adapted in these particular cases. We eliminated also some companies for which we recorded a
156 lack of data because of the absence of reference documents. For each of the firms kept in our sample, there is data
157 concerning a period of 10 years ??2006) ??2007) ??2008) ??2009) ??2010) ??2011) ??2012) ??2013) ??2014)
158 ??2015). Database includes financial statements.

159 The collection of data, the financial statements are available on DATASTREAM

14 PROFITABILITY (PROF):

160 12 b) The variables and hypothesis choices i. Dependent 161 variable: The debt ratio

162 According to literature, the ratio of debt can be measured by several methods. The total ratio debt (Hovakimian
163 and al., 2001), the short, medium and longterm ratio (Titman and Wessels, 1988). As part of our analysis, we
164 defined the debt ratio by dividing the total debt assets (Degryse and al., 2012).

165 13 ii. Explanatory variables Size of the firm (SIZE):

166 The Size is one of the essential attributes that can affect the capital structure of a firm. According to the financial
167 theory, there are two contradictory effects of the size of the firm on the debt.

168 Starting by the arbitrage theory, the size is considered to be proxy variable of the cost of bankruptcy (Rajan
169 Et Zingales, 1995 Empirical studies have shown that by taking account of the existence of economies of scale in
170 terms of bankruptcy costs, the large firms have tendency to have a level of debt more important than the small
171 enterprises. Indeed, the larger, the firm is the more it is able to diversify and reduce the volatility of cash flows
172 and, therefore, a low risk of failure. Lim (2012) showed that the size of the firm is positively linked to the debt
173 ratio of the Chinese financial institutions. He also noted that the effect of this variable on the capital structure
174 is similar for the other industries and that the State doesn't have an influence on the choices of the financing
175 model. In that case, there is a positive relation between the size and the level of debt.

176 According to the signal theory, a reverse relation is determined between the size and debt. The size is used
177 as an inverse measure of the information got by external investors. In fact, it reflects for the large firms, the
178 access to the markets of capitals and their preference to issuing more financial assets. On the contrary, the
179 small enterprises prefer the internal financing because they are more sensitive to the asymmetry of information.
180 In this context, the debt level is a decreasing function of size ??Titman and Wessel, 1988; Rajan and Zingales,
181 1995; Ozkan, 2001; Kouki, 2012). Fethi and al. (2014) showed that the effect of the variable size of firms in
182 developing countries and firms quoted in the Stock Exchange of Teheran, on the structure of the capital is
183 different.

184 In this study, we have measured the variable size by the turnover logarithm. We assume that there is a positive
185 relationship between the size of the business and the level of debt (hypothesis 1).

186 14 Profitability (PROF):

187 Profitability has an important influence on the capital structure. However, this influence is sometimes
188 contradictory. In view of the theory of the optimal debt ratio (Trade-OFF), the more profitable the firm is, the
189 more it resorts to debt financing so as to benefit from debt-related tax savings. Therefore, a positive correlation
190 between profitability and the level of debt is provided (Fama and French, 2002).

191 On the other hand, according to the pecking order theory, the effect of the variable profitability on debt is
192 reversed. This negative correlation highlights the fact that leaders prefer to finance themselves first by their own
193 funds in order to control the agency costs resulting from external financing. Several empirical studies have built
194 up this relationship (Dubois, 1985; Titman and Wessels, 1988; Kremp and Stoss, 2001 and Fama and French,
195 2002). Booth and al. (2001) have verified this significant relationship for all of their data set from 10 developing
196 countries. As for the developed countries, Titman and Wessels (1988) have also confirmed this relationship.
197 Fattouh and al.(2008) concluded that there is a negative effect of profitability on indebtedness that is due to the
198 fact that profitable enterprises are able to self-finance themselves and, therefore, are not forced into debt. In
199 fact, the level of profitability of a company is considered as a signal given to the lenders on the reliability of the
200 company in debt. The negative impact of profitability on the debt ratio was recently confirmed by Lim (2012).

201 According to Rajan and Zingales (1995) and Booth and al. (2001), we can measure this variable by the
202 operating surplus ratio on total assets. For this purpose, we assume the following hypothesis: Profitability
203 negatively affects the debt level (hypothesis 2).

204 Tangibility of Assets (TANG): The major financing theories anticipate a positive correlation between the
205 tangibility of assets and the level of debt. In the context of agency theory, this relationship is due to the fact
206 that companies with sufficient tangible assets are less susceptible to the risk of moral hazard and therefore to
207 agency costs (Jensen and Meckling, 1976).In this perspective, tangible assets constitute guarantees that reduce
208 the risk of the lender and decrease the risk of bankruptcy. Several empirical work on the relationship between the
209 asset structure and debt have led to similar results ??Bradlyand al, 1984 Achy (2009), ??hang and al. (2008)
210 showed that the companies that hold more tangible assets are less sensitive to information asymmetries, and
211 prefer the use of debt to finance themselves. On the other hand, Latridis and Zaghoum (2013) concluded that
212 there is an inverse relationship between tangible assets and the debt ratio. They argue that companies, with a
213 high proportion of tangible assets in their balance sheet, have adequate sources of capital that minimize in their
214 turn the use of external financing.

215 We measure this variable by the ratio of fixed assets to total assets and we assume that the tangibility of assets
216 has a favorable effect on the debt ratio (hypothesis 3).

217 15 Growth opportunities (GROW):

218 According to financing theories, growth opportunities have two contradictory effects on the level of debt. In the
219 context of agency theory and compromise, interest conflicts between shareholders and creditors generate agency
220 costs related to a relatively high debt. High-growth companies will fund their projects by issuing shares in order
221 to reduce their costs. Based on this hypothesis, a negative relationship between growth opportunity and debt has
222 been confirmed in a number of studies such as Jensen and Meckling (1976), Myers (1977), Titman and Wessels
223 (1988), ??arclay and al (1995), Rajan and Zingales (1995), Barclay and Smith (1999), Graham (2000), Heshmati
224 (2001), Booth and al. (2001), Hovakimian and al. (2004). Baker and Wurgler (2002) showed that companies
225 are less indebted during periods marked by good market valuation, especially when the opportunity for growth
226 (measured by Market to Book) is high. However, in accordance with hierarchical preferences theory, companies
227 with strong growth experience an increase in their need for external financing, and they are able to cope with
228 financing problems, generating a favorable effect on the leverage (Drobetz and Wanzenried, 2006;Chen, 2004 and
229 ??alacin Sanchez andal., 2013).

230 Growth opportunities are measured by the market value ratio of shares + carrying value of debts)/ accounting
231 value of the total assets. This measure was used by Lee and O'Neill (2003) and Ghosh and al. (2007).We assume
232 that: growth opportunities have a negative effect on the debt ratio (hypothesis 4).

233 16 The risk of Bankruptcy (FAIL):

234 The theories of hierarchical financing and compromise anticipate a negative relationship between the risk and the
235 level of debt. ??oss, Leland and Pyle (1977); Leary and Roberts (2005) and Huang and Song (2006) say that the
236 greater more the risk of a business is, the higher probability of failure is, the use of debt as a means of financing
237 is low.

238 We measure this variable by the interest ratio of loans and debts/ gross operating profit and we assume that,
239 the risk of bankruptcy negatively affects the debt ratio (hypothesis 5).

240 17 Credit Rating (RATE):

241 Credit rating is the opinion of the rating agency on the willingness and ability of an issuer to ensure the one-time
242 payment of liabilities for a debt obligation. It is, therefore, a crucial element, affecting the cost and the measure
243 of access to credit and also contributing to form the financial structure of the companies. ??isgen (2006) was a
244 pioneer in introducing the assumption that credit rating is taken into consideration by the leaders when making
245 decisions about the capital structure. He says that credit rating is one of the major factors of the funding choice.
246 This is the assumption of the capital structure linked to the credit ratings noted CR-CS. The choice of this
247 hypothesis results from the fact that Kisgen observe that generally firms facing a probable change in their ratings
248 will decrease their borrowing net compared to their own net funds by comparing them to a number of reference
249 firms that do not have extreme credit ratings (low degree or high degree).In 2009, Kisgen developed his research
250 by examining the effect of real credit rating change on the business financing decision. He confirmed that the
251 costs of the company's capital are different for different levels of credit rating.

252 Kemper and Rao (2013), reached in contradictory results to the CR-CS hypothesis. They found a non-
253 significant relationship between the rating variable and the debt level. However, they pointed out that this
254 does not necessarily mean that leaders should ignore the informational role of ratings in determining the capital
255 structure of their firms.

256 With the hypothesis of Kisgen (CR-CS), Drobetz and Heller (2014), say that the changes in debt rates of the
257 quoted U.S. companies correlate with the scores awarded by the rating agencies. However, this hypothesis is
258 rejected by a sample of German companies because of its financial regime which is dominated by banks.

259 Credit rating is therefore a signal of quality and investment decision. This variable is a mute variable that
260 takes the value 1 if the enterprise is noted and 0 if not, and we assume that the financial rating has a positive
261 effect on the debt ratio (hypothesis 6).

262 Table 1 below summarizes the measures taken from the various independent variables as well as their expected
263 signs. The debt ratio varies between a minimum value of 0 and a maximum value of about 2.15 with an average
264 of 0.15. These results show that the level of debt is widely dispersed. Regarding the risk of bankruptcy, we
265 observe that the ratio of interest loans and debts/Operating surplus is in the order of 1%. As for the profitability
266 of the assets of our sample, it admits an average of 5%.

267 18 c) Model

268 The model to be estimated for analyzing the determinants of the capital structure is available in the following
269 format.

270 Our regression model is based on panel data, which has the specificity of treating both a dimension for
271 individuals (firm) and another for time. It is often interesting to identify the effect associated to each individual
272 if it is common or specific and therefore see if it is fixed or random.

273 19 d) Model estimation

274 Before starting the fixed-effect or random-effect model estimation, it is necessary to verify the existence of the
275 individual effects. To do this, we apply a Fischer test that tells us about the existence of a specific or a common
276 effect in our data.

277 Based on the results of the Fisher test, we can see that the P-value of the equation tested is less than 5%
278 ($\text{Prob} > F = 0.0000$). Thus, we reject the null hypothesis. And we, therefore, affirm the existence of the specific
279 effects.

280 Next, we apply another specification test (Hausman test) that is used to discriminate between the fixed and
281 the random effects. From the results of the Hausman test, the probability of accepting of the null hypothesis is
282 less than 5% $\text{Pro} > \text{Chi}^2 = 0.0000$.

283 This implies that the fixed-effect model is better than the random-effect model. So, we retain the fixedeffect
284 model for estimating our regression model.

285 Before testing our equations, a more extensive and bivariate analysis is necessary to ensure the reasonable
286 degree of association between the different explanatory variables.

287 So, it's suitable to set the matrix correlations aimed to test the possibility of the presence of multicollinearity
288 problem between the independent variables. Indeed, the absence of this problem in our sample is perceived as a
289 fundamental condition to carry out a linear regression.

290 To verify the absence of this problem in our base sample, we calculate the Pearson correlation coefficients as well
291 as the "Variance Inflation factor" VIF 1 1 VIF ** Variance inflation factor allows to control the multicollinearity
292 of the explanatory variables, linear independence means that a VIF equal to 1. Colinearity means a VIF superior
293 to 10.

294 (table 4).

295 The Pearson correlation matrix examination (table 3) shows that no critical correlation can be found between
296 the independent variables (we exclude the qualitative variables).

297 In fact, according to Kevin (1992), to decide on a serious problem of colinearity between the independent
298 variables, r must be > 0.7 . In addition, according to table (3), we note that the values of VIF are less than 10,
299 the limit suggested by Peter and al. (1989). Based on these results, we can conclude that there is no problem
300 with multicollinearity.

301 20 The Results

302 After the assertion, provided above, concerning the existence of fixed individual effects it is necessary to ensure
303 the errors terms properties. It is, in fact, to verify the hypotheses of homoscedasticity and correlation.

304 So, we start by testing the heteroscedasticity through the Breusch-Pagan test. As part of a heteroscedasticity
305 test, the null hypothesis is the homoscedasticity, which will be the case when the variance of the errors of each
306 observation is constant. This test gave us a statistic of Fischer that is significant ($\text{Prob} > F = 0.000$). This leads us
307 to the rejection of the null hypothesis and consequently of the confirmation of the presence of an intra individual
308 heteroscedasticity problem.

309 In this case, it is appropriate to use the generalized least squares method (FGLS) that allows correction.

310 However, in order to implement this method, first it is necessary to identify the form of the heteroscedasticity,
311 for this, a modified Wald test was run on Stata. This test checks if there is a problem of inter individual
312 heteroscedasticity. Assuming the null hypothesis, the test supposes that the variance of errors is the same for
313 all individuals and the statistic follows a chi-square law of degree of freedom N. From the value of the P-value
314 associated with the chi-square test, we cannot accept the null hypothesis. The rejection of this hypothesis does
315 not allow to further specify the structure of the heteroscedasticity. And we remain with the previous conclusion
316 of heteroscedasticity without any additional specification. Then, to detect a possible dependence of errors, we
317 carried out the intra individual autocorrelation test of Wooldridge (2002).

318 The results of this test (table) confirm the presence of an autocorrelation of the errors of order 1. ($\text{Prob} > F$
319 is less than 0.05).

320 In summary, we conclude the presence of heteroscedasticity and autocorrelation problems. In panel data, it
321 is reasonable to resort to the Feasible Generalized Least Square (FGLS) method to overcome these problems.
322 Therefore, we will interpret the results of the FGLS estimation of our regression model.

323 Contrary to the hypothesis of Modigliani and Miller (1958) and Miller (1977), most of the variables significantly
324 explain the level of indebtedness. The hypothesis of neutrality is, therefore, rejected.

325 It appears from the table that the FGLS estimate shows two non-significant variables. It's the growth of
326 assets (GROW) and the risk of bankruptcy (FAIL). In contrast, the variables size (SIZE), the tangibility of the
327 Asset (TANG), the profitability (PROF) and the financial notation (RATE) are significant. The results of this
328 estimate show that some variables keep their positive (RATE, TANG) or negative (PROF) effect, while other
329 variables have changed their sign (SIZE).

330 The estimation of our regression model, including the size of the company as a debt level, show that this
331 variable, has a significant (5%) and a negative effect (see table 4). Hypothesis1 is, therefore, rejected. This result
332 is contradictory to the results of other authors who suggest that large firms, with more ease in accessing capital
333 markets, become more indebted (Ang and al., 1982; Booth and al., 2001).

334 The negative sign can be explained by the fact that, and according to the predictions of the signal theory,
335 large companies are less indebted. This result is verified by the fact that the investment climate in the MENA
336 region is characterized by a strong information asymmetry. So, investors are uncertain about decisions. Kouki
337 (2012) has verified this relationship as part of the market timing theory and says that large companies prefer to
338 finance themselves by issuing shares when market conditions are favourable.

339 With regard to profitability, the table shows that the effect of this variable on the level of indebtedness is
340 significantly negative at the threshold of 1%. This result, which is similar to that obtained by ??ang and al.
341 (2009) in the context of Taiwan, attests to the idea that the most profitable companies finance their activities by
342 their internal own funds to avoid problems related to external financing, which is consistent with the theory of
343 the hierarchy of funding. This result clearly confirms hypothesis 2 that leaders prefer to finance themselves first
344 by private equity, in order to control agency costs resulting from external financing, which takes us to confirm
345 the existence of agency problems between the various partners of the company in the MENA region and their
346 limited access to foreign capital.

347 In accordance with what has been set (hypothesis 3), the tangibility variable of assets has a positive and
348 significant effect (1%) on the debt ratio (see table 4). Indeed, the finance decision of a company depends on its
349 ability to provide guarantees. The More guarantees it has, more it gets into debt, which is fully aligned with the
350 theoretical predictions of compromise theories and hierarchical funding preferences.

351 Concerning credit scoring, the regression model estimation shows that the coefficient relative to this variable is
352 positive and significant. Like the Kisgen (2009) study, and in accordance with hypothesis 6, this result highlights
353 the considerable importance of this variable and its favourable effect on the structure of the capital. Indeed, the
354 credit rating is an indicator of the leverage effect. The companies noted tend to become more indebted compared
355 to the non-noted companies.

356 In an environment that is characterised by nontransparency, credit ratings are an essential factor of the capital
357 structure. Creditors give more importance to the rating for the financing of the company.

358 **21 Conclusion**

359 In this article, we were interested in studying the capital structure of the MENA region countries. In other
360 words, the main purpose of this article is to detect factors influencing investment decisions and extending the
361 scope of knowledge about the financial structure of a new institutional framework, that of enterprises in developing
362 countries So, the scope and predictions of the theories of modern finance are tested on a panel of companies in the
363 MENA area established beforehand for this purpose. The results of the variable representing the tangible assets
364 show that the guarantees are required for funds allocation. That is in line with the agency theory predictions.
365 So, the value of the assets plays a key role in determining the financial leverage of the companies of our sample,
366 contrary to this paper that predicts that the tangibility of the assets must take less importance in the countries
367 with banking guidance.

368 The predictions of the funding hierarchy theory are empirically validated. Indeed, the negative correlation of
369 the variable "profit" highlights the fact that highly profitable firms prefer to finance themselves through their
370 own internal funds. From our empirical results, credit ratings directly affect the debt. This implies that credit
371 ratings are taken into account in a formal way by the leaders when making funding decisions.

372 Other results confirm the theoretical predictions as well as our hypothesis.

373 However, the effect of some variables is not approved of. The differences are due to the institutional differences
374 and to the nature of the financial markets. ¹ ²

¹© 2019 Global Journals

²() C Capital Structure in Mena Region: A Panel Data Analysis

21 CONCLUSION

1

[Note: C]

Figure 1: Table 1 :

2

Continuous variables					
	Average	Standard deviation	Minimum	Maximum	Observations
DEBT	.159507	.1860276	0	2.15529	
SIZE	2.732269	1.294209	.2227165	9.19034	
TANG	.2880485	.2727431	-.0040929	3.404869	
PROF	.0589422	.1320061	-1.741608	3.857143	
GROW	.1733524	1.329412	-.9987168	56.15306	
FAIL	.0155841	.0827724	-.5261261	2.053459	

Dichotomous variables					
	Modality		Frequency	Percentage	
EXICO	1:enterprise is noted		1.01 5.06	16.64	
	0:entreprise not noted			83.36	

Figure 2: Table 2 :

3

IV.

Figure 3: Table 3 :

4

Variables	Coefficients	Student's paired t test probability
Constant	.1168813	0.000 ***
SIZE	-.0042437	0.050**
PROF	-.3195352	0.000***
TANG	.1679082	0.000***
GROW	.0079086	0.195
FAIL	.0095458	0.738
RATE	.0140877	0.076 *
Breusch-Pagan Test for Heteroskedasticity	Prob>F : 0.000	
Modified Wald test for group wise heteroskedasticity	Prob>chi2 : 0.000	
Wooldridge Test for Autocorrelation	Prob>F : 0.000	
* significant at 10% level ** significant at 5% level *** significant at 1% level		
V.		

Figure 4: Table 4 :

375 [American EconomicReview] , *American EconomicReview* 62 p. .

376 [Ang and Et Megginson ()] 'A test of the Before-Tax Versus After-Tax Equilibrium Models of Corporate Debt'.
377 J Ang , W Et Megginson . *Research in Finance* 1990. 8 p. .

378 [Jensen ()] 'Agency Costs of Free Cash Flow, Corporate Finance and Takeovers'. M C Jensen . *American*
379 *Economic Review* 1986. 76 (2) p. .

380 [Fama ()] 'Agency Problems and the Theory of the Firm'. E Fama . *Journal of Political Economy* 1980. 88 (2)
381 p. .

382 [Smith and Warner ()] 'Bankruptcy, Secured Debt, and Optimal Capital'. J R Smith , J B Warner . *Structure:*
383 *Comments. Journal of Finance* 1979. 34 p. .

384 [Berger and Di ()] 'Capital structure and firm performance: a new approach to testing agency theory and an
385 application to the banking industry'. A N Berger , P Di . *Feds Paper* 2002. 54.

386 [Alves and Ferreira ()] 'Capital structure and law around the world'. P F P Alves , M A Ferreira . *Journal of*
387 *Multinational Financial Management* 2011. 21 p. .

388 [Fraser et al. ()] 'Capital structure and political patronage: the case of Malaysia'. D R Fraser , H Zhang , C
389 Derashid . *Journal of Banking and Finance* 2006. 30 p. .

390 [Jong et al. ()] 'Capital structure around the world: The roles of firm-and country-specific determinants'. A D
391 Jong , T T Nguyen , R Kabir . *Journal of Banking and Finance* 2008. p. .

392 [Kouki ()] 'Capital Structure Determinants: New Evidence from French Panel Data'. M Kouki . *International*
393 *Journal of Business and Management* 2012. 7 (1) p. .

394 [Booth et al. ()] 'Capital structure in developing countries'. V Booth , A Aivazian , Demirguc-Kunt , Maksimovic
395 . *Journal of Finance* 2001. 56 p. .

396 [Latridis and Zaghmour ()] 'Capital Structure in the MENA Region: empirical Evidence from Morocco and
397 Turkey'. G Latridis , S Zaghmour . *Investment Management and Financial Innovations* 2013. 10 (1) p. .

398 [Palacín-Sánchez et al. ()] 'Capital structure of SMEs in Spanish regions'. M J Palacín-Sánchez , L M Ramírez-
399 Herrera , F Di Pietro . *Small Business Economics* 2013. 41 (2) p. .

400 [Yang et al. ()] 'Co-determination of capital structure and stock Returns. A LISREL approach: An empirical
401 test of Taiwan stock markets'. C. -C Yang , C.-F Lee , Y. -X Gu , Y.-W Lee . *Quarterly Review of Economics*
402 and *Finance* 2010. 50 (2) p. .

403 [Achy ()] 'Corporate Capital Structure Choices in MENA: Empirical Evidence from Non-Listed Firms in
404 Morocco'. L Achy . *Middle East Development Journal* 2009. 1 (2) p. .

405 [Litov ()] *Corporate Governance and Financing Policy: New Evidence. Unpublished working paper*, L Litov .
406 2005. Washington University

407 [Chang et al. ()] 'Corporate governance and the dynamics of capital structure: New evidence'. Ya-Kai & Chang
408 , Robin K Chou , Huang , Tai-Hsin . *Journal of Banking & Finance* 2014. 48 p. .

409 [Modigliani and Miller ()] 'Corporate Income Taxes and the Cost of Capital: a Correction'. F Modigliani , M H
410 Miller . *American Economic Review* 1963. 53 (3) p. .

411 [Wu and Yue ()] 'Corporate Tax, Capital Structure and the Accessibility of Bank Loans: Evidence from China'.
412 L Wu , H Yue . *Journal of Banking & Finance* 2009. 33 p. .

413 [Fauver et al. ()] 'Culture, agency costs, and governance: International evidence on capital structure'. L Fauver
414 , M Donald , B Michael . *Pacific-Basin Finance Journal* 2015. Elsevier. 34 p. .

415 [Miller ()] 'Debt and Taxes'. M Miller . *Journal of Finance* 1977. 32 p. .

416 [Ozkan ()] 'Determinants of capital structure and adjustment to long run target evidence from UK company
417 panel data'. A Ozkan . *Journal of Business Finance and Accounting* 2001. 28 p. .

418 [Chen ()] 'Determinants of Capital Structure of Chinese Listed Companies'. J Chen . *Journal of business research*
419 2004. 57 (12) p. .

420 [Lim ()] 'Determinants of capital structure: Empirical evidence from financial services listed firms in China'. T
421 C Lim . *International Journal of Economics and Finance* 2012. 4 (3) p. .

422 [Myers ()] 'Determinants of Corporate Borrowing'. S Myers . *Journal of Financial Economics* 1977. 5 p. .

423 [Antoniou et al. ()] 'Determinants of Corporate Capital Structure: Evidence from European Countries'. A
424 Antoniou , Y Guney , K Paudyal . *SSRN Electronic Journal* 2002.

425 [Ferri and Jones ()] 'Determinants of financial structure: A new methodological approach'. M Ferri , W Jones .
426 *Journal of Finance* 1979. 34 p. .

427 [Hovakimian et al. ()] 'Determinants of target capital structure: The case of dual debt and equity issues'. A
428 Hovakimian , G Hovakimian , H Tehranian . *Journal of financial economics* 2004. 71 (3) p. .

21 CONCLUSION

429 [Leary and Roberts ()] 'Do firms rebalance their capital structure' M T Leary , M R Roberts . *Journal of finance*
430 2005. 60 p. .

431 [Kisgen ()] 'Do Firms Target Credit Ratings or Leverage Levels?'. D J Kisgen . *Journal of Financial and*
432 *Quantitative Analysis* 2009. 44 p. .

433 [Song ()] 'Does debt market timing increase firm value'. K Song . *Applied Economics* 2009. 41 (20) p. .

434 [Chen ()] *Does Industry-Specific Expertise Improve Board Advising? Evidence from forced Bank CEO Turnovers*,
435 Z Chen . 2011. University of Tennessee (Working Paper)

436 [Wooldridge ()] *Econometric analysis of cross section and panel data*, J M Wooldridge . 2002. Mit Press.

437 [Setayesh et al. ()] 'Factors affecting capital structure theory representation'. M Setayesh , M Baharlouie , F
438 Ebrahim . *Advances in Accounting* 2012. 1 (3) p. .

439 [Beaver ()] 'Financial ratios as predictors of failure'. W H Beaver . *Empirical Research in Accounting* 1966. 4 p. .

440 [Graham ()] 'How big are the tax benefits of debt'. J R Graham . *Journal of Finance* 2000. 55 p. .

441 [Gabrie and Jacquier ()] *Les théories modernes de l'entreprise: l'approche institutionnelle. Economical*, H Gabrie
442 , J L Jacquier . 2001. p. 248.

443 [Baker and Wurgler ()] 'Market Timing and Capital Structure'. M Baker , J Wurgler . *Journal of Finance* 2002.
444 57 p. .

445 [Fattouh et al. ()] 'Non-Linearity in the Determinants of Capital Structure: Evidence from UK firms. Centre for
446 Financial and Management Studies'. B Fattouh , H Laurence , S Pasquale . *SOAS* 2008. University of London

447 [Mateev et al. ()] 'On the determinants of SME capital structure in Central and Eastern Europe: A dynamic
448 panel analysis'. M Mateev , P Poutziouris , K Ivanov . *International Business and Finance*, 2013. 27 p. .

449 [Bradley et al. ()] 'On the Existence of an Optimal Capital Structure: Theory and Evidence'. M Bradley , G
450 Jarrell , H Kim . *Journal of Finance* 1984. 39 (3) p. .

451 [De Angelo and Masulis ()] 'Optimal Capital Structure under Corporate and Personal Taxation'. H De Angelo ,
452 R Masulis . *Journal of Financial Economics* 1980. 8 p. .

453 [Alchian and Demsetz ()] *Production, Information Costs, and Economic Organization*, A A Alchian , H Demsetz
454 . 1972.

455 [Watson and Wilson ()] 'Small and Medium Size Enterprise Financing: A Note on Some of the Empirical
456 Implications of a Pecking Order'. R Watson , N Wilson . *Journal of Business, Finance and Accounting*
457 2002. 29 p. .

458 [Fethi et al. ()] 'Studying the role of financial risk management on return on equity'. S Fethi , F Zarei , S S
459 Esfahani . *International Journal of Business and Management* 2014. 7 (9) p. .

460 [Buettner et al. ()] 'Taxation and capital structure choice-Evidence from a panel of German multinationals'. T
461 Buettner , M Overesch , U Schreiber , G Wamser . *Economics Letters* 2009. 105 (3) p. .

462 [Faccio and Xu ()] 'Taxes and capital structure'. M Faccio , J Xu . *Journal of Financial and Quantitative Analysis*
463 2013. 107 p. .

464 [Shyam-Sunder and Myers ()] 'Testing Static Trade-Off against Pecking Order Models of Capital Structure'. L
465 Shyam-Sunder , S Myers . *Journal of Financial Economics* 1999. 51 (2) p. .

466 [Frank and Goal ()] 'Testing the Pecking Order Theory of Capital Structure'. M Frank , V Goal . *Journal of*
467 *Financial Economics* 2003. 67 p. .

468 [Fama and French ()] 'Testing Trade-Off and Pecking Order Predictions about Dividends and Debt'. E Fama ,
469 K French . *Review of Financial Economics* 2002. 15 p. .

470 [Ang et al. ()] 'The administrative costs of corporate bankruptcy: A note'. J S Ang , J H Chua , J J McConnell
471 . *Journal of Finance* 1982. 37 (1) p. .

472 [Myers ()] 'The Capital Structure Puzzle'. S Myers . *Journal of Finance* 1984. 39 p. .

473 [Barclay and Smith ()] 'The Capital Structure Puzzle: Another Look at the Evidence'. M Barclay , C Smith .
474 *Journal of Applied Corporate Finance* 1999. 12 p. .

475 [Ghazouani ()] 'The Capital Structure through the Trade-Off Theory: Evidence from Tunisian Firm'. T
476 Ghazouani . *International Journal of Economics and Financial Issues* 2013. 3 (3) p. .

477 [Modigliani and Miller ()] 'The Cost of capital, Corporation Finance and the Theory of Investment'. F Modigliani
478 , M H Miller . *American Economic Review* 1958. 48 p. .

479 [Hovakimian et al. ()] 'The Debt-Equity Choice'. A Hovakimian , T Opler , S Titman . *Journal of Financial and*
480 *Quantitative Analysis* 2001. 36 p. .

481 [Titman and Wessels ()] 'The Determinants of Capital Structure Choice'. S Titman , R Wessels . *Journal of*
482 *Finance* 1988. 43 p. .

483 [Huang and Song ()] 'The Determinants of Capital Structure: Evidence from China'. S Huang , F M Song .
484 *China Economic Review* 2006. 17 p. .

485 [Ross ()] 'The determination of Financial Structure: the Incentive Signaling Approach'. S A Ross . *Journal of*
486 *Economics* 1977. 8 p. .

487 [Heshmati ()] 'The dynamics of capital structure: Evidence from Swedish». Stockholm school of economics'. A
488 Heshmati . *Journal of Economics and Finance* 2001. 15 p. .

489 [Droebetz and Heller ()] *The Impact of Credit Rating Changes on Capital Structure Decisions: Evidence from*
490 *Non-listed Firms in Germany*, W Droebetz , S Heller . 2014. (Working paper)

491 [Degryse et al. ()] 'The impact of firm and industry characteristics on small firms' capital structure'. H Degryse
492 , P Kappert , P D Goeij . *Small Business Economics* 2012. 38 p. .

493 [Ghosh et al. ()] 'The pricing of seasoned equity offerings: evidence from REITs'. C Ghosh , R Nag , C Sirmans
494 . *Real EstateEconomics* 2007. 28 p. .

495 [Harris and Raviv ()] 'The Theory of Capital Structure'. M Harris , A Raviv . *Journal of Finance* 1991. 46 (1)
496 p. .

497 [Jensen and Meckling ()] 'Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure'.
498 M Jensen , W Meckling . *Journal of Financial Economics* 1976. 3 (4) p. .

499 [Arrow ()] 'Uncertainty and the welfare economics of medical care'. K J Arrow . *American economic review* 1963.
500 53 p. .

501 [Droebetz and Wanzenried ()] 'What determines the speed of adjustment to the target capital structure?'. W
502 Droebetz , G Wanzenried . *Applied Financial Economics* 2006. 16 p. .

503 [Rajan and Zingales ()] 'What Do We Know about Capital Structure? Some Evidence from International Data'.
504 R Rajan , L Zingales . *Journal of Finance* 1995. 50 p. .