

1 Testing for Volatility Persistence in Wheat Prices: Is 2 Idiosyncratic Source Matters?

3 Mustapha, Saidi Atanda¹ and Yusuf, Ismaila Akanni²

4 ¹ University of Lagos

5 Received: 10 December 2018 Accepted: 31 December 2018 Published: 15 January 2019

6

7 **Abstract**

8 The paper investigates the best fit estimation technique for modeling volatility persistence in
9 price of wheat. It further evaluates the source of rising volatility. It provides two main
10 innovations: first, it analyzes wheat returns volatility types namely idiosyncratic and
11 systematic volatility types and provides evidence of structural shifts in the price of wheat
12 using the Narayan and Popp (2010) test and further modified the estimations to include both
13 symmetric and asymmetric volatility models. Second, it uses several GARCH specifications to
14 ascertain which of the sources of volatility generate more volatility. The paper finds two
15 structural breaks that occur in 2015/2016 and 2018. It notices the existence of persistence and
16 leverage effects in the returns volatility of wheat and that rising volatility regardless of types,
17 necessitates demand for higher returns by investors to hold the investment. Conclusively, it
18 recommends that, when modeling wheat return volatility, issues of asymmetric effects,
19 structural shifts, and volatility persistence are very pertinent and that investors should
20 structure investment portfolio with the knowledge that the idiosyncratic source heralds more
21 persistence in volatility and therefore, necessitates utmost concentration.

22

23 **Index terms**— wheat price volatility, volatility persistence, EGARCH, and structural shifts.

24 **1 Introduction**

25 n understanding of the persistence of volatility risk in grain prices most importantly, the price of wheat is crucial
26 to help design a sustainable strategy to hedge against the attendance effects. Studies have documented several
27 factors that could be accountable for price increases; these include: ban of export of major grain such as corn,
28 supply shortages, reduced stock-to-use ratios and panic buying by some major importers (Gilbert, 2010; and
29 Minot, 2014). The long shift (decline) in the prices of wheat between 2017 and 2019 with increased volatilities
30 (see Figure 1) have generated immense concerned for investors to search for which of the volatility sources generate
31 the highest persistence of volatility risk. Having a better comprehension of effective modeling of price returns
32 and volatility becomes imperative considering seasonal shifts in prtrends.

33 It is clear that this is not the first time that there is going to be a shift in commodity prices, specifically
34 prices of grains. For instance, commodity prices rose rapidly between 2010 and 2011; and since 2007, global
35 grain markets have witnessed an upward shift in price volatility. This is evident in the submission of Minot
36 (2014), which provide analyses of pre-during-post of the global crises. The study shows that for these periods,
37 the unconditional volatility of grain prices rose by 52% for corn, 87% for rice and 10% for wheat, respectfully.
38 This indicates that price of wheat produces increased upward volatility risk to investors when compared to other
39 grains.

40 The paper, therefore contributes to the existing studies on commodity price volatility modeling in three folds:
41 first, it uses the recent Narayan and Popp (2010) to model the wheat return volatility. The approach allows for
42 structural breaks in data series. Second, the wheat return volatility analysis was performed using the volatility

2 DATA AND METHODS

43 sources. This is an improvement to existing studies on emerging markets that had concentrated on a single
44 source of volatility. Third, the paper considers both systematic and idiosyncratic volatility risks models. The
45 main thrust of the paper is to identify structural breaks that occur in wheat returns; and consequently, show
46 how intense is the volatility risk in wheat price in the international market. Our results also lend support for the
47 consideration of the source that generates more persistence in the wheat return volatility.

48 Comparatively, the idiosyncratic volatility models seem more appropriate in modeling wheat return volatility
49 than the systematic ones, as it produces more persistence in volatility risk. Most importantly, the Exponential
50 GARCH (EGARCH) model gives the best fit and therefore, propose that when modeling wheat return volatility,
51 the EGARCH model should be considered. The implication therefore, is that investors in wheat should expect
52 higher returns during rising volatility regardless of types and otherwise. The rest of the paper is structured as
53 follows. Section two presents data and methods. Section three describes the analysis of empirical results and
54 section four concludes the paper.

55 2 Data and Methods

56 The weekly wheat price data used in this study were garnered from the Bloomberg terminal throughout January
57 2014 and April 2019. The pre-estimation analysis is performed in two folds: the first provides descriptive statistics
58 for wheat returns volatility considering the two types of volatilities generatedsystematic and idiosyncratic
59 volatilities; the second shows the unit root test using the NP unit root test with structural breaks. The wheat
60 returns is computed with the formula $i_t = i_{t-1} + r_t$.

61 Table 1 presents the descriptive results on wheat return volatility for both systematic and idiosyncratic
62 volatilities. It seems evidence from the results that there are significant variations in the trends of the two
63 volatilities. Comparatively, following the standard deviation result, the trend of the idiosyncratic volatility
64 appears more volatile than the systematic volatility. The statistical distribution of the series, indicates that
65 both idiosyncratic and systematic volatilities are negatively skewed which shows that there exist extreme right
66 tails in both series. Other descriptive statistics show that wheat return volatility series are leptokurtic (both
67 possess fat tails than the normal distribution); the Jarque Bera statistic reveals evidence of non-normality for
68 both systematic and idiosyncratic volatilities. Since the descriptive results show that wheat return volatilities are
69 negatively skewed and not normally distributed, therefore, the inferential statistics that is most appropriate must
70 follow non-normal distributions (see Wilhelmsson, 2006). The alternatives available consist of the generalized
71 error distribution (GED), the Student-t distribution, the Student-t distribution with fixed degree of freedom and
72 GED with fixed parameter. All these non-normality procedures are conducted for each of the volatility models
73 and the model selection criteria are used to determine the most appropriate models. Only results that are best
74 fit in each of the techniques is reported in the report. Results of the unit root test are presented in Table 2. The
75 estimations follow the NP test that allows for the inclusion of two structural breaks in the series. The NP test is
76 based on two assumptions on the deterministic components. The first allows for the two breaks in the intercept
77 of the data series, which we tagged model 1 (M1). The second allows for two structural breaks both in levels
78 and in slope of trend of the series. It is named model 2 (M2). Therefore, the two models are specified differently
79 to consider for the deterministic component. The models are specified as follows: is the polynomial lag operator
80 that allows breaks to occur slowly over time (see Narayan et al., 2010). The procedure follows the innovative
81 outlier framework and it allows for changes to the trend to occur gradually rather than been instantaneous. The
82 assumption behind the framework is that the series reacts to shocks from the innovation process (i.e. a Moving
83 Average representation of the shocks).
84 Where $i_t = \alpha + \beta_1 i_{t-1} + \beta_2 i_{t-2} + \dots + \beta_k i_{t-k} + \epsilon_t$
85 Following the assumption on the deterministic component α and stochastic component ϵ_t of i_t ,
86 The break dates are selected using the sequential procedure proposed by the NP test and appropriate critical
87 values as indicated in the work of Narayan et al (2010). In Table 2, the unit root test results are presented
88 with the optimal break point dates for both volatility types. As presented in Table 2, the two types of return
89 volatility series are non-stationary after accounting for structural breaks and thus, adequate cognizance should
90 be taken to recognize these breaks when dealing with wheat returns volatility modeling. Expectedly, the break
91 dates (TB1 and TB2) for the two volatilities considered are not far apart. The first break was experienced in
92 2015 for both considered volatility types. Correspondingly, the second break (TB2) appears during the 2018
93 trading bout. In this period, the wheat market witnessed tremendous negative sentiments, rising speculations
94 and huge divestment and the volatility risks were rising against falling wheat price trajectories.

103 3 III. Wheat Return Volatility Estimates

104 In this section, the paper makes use of different plausible models to estimate wheat return volatility. This
105 is conducted by considering both systematic and idiosyncratic volatility sources and consequently, the paper
106 compares the performance of the estimations by bearing in mind varying wheat portfolios, equal and value
107 weighted volatility. Model selection criteria used for the selection of appropriate model of return volatility of wheat
108 are Schwarz Information Criterion (SIC), Akaike Information Criterion (HIC) and HQC. The volatility results
109 also present some post-estimation analyses using ARCH LM test to validate the presence of heteroscedasticity
110 in the selected volatility estimates. The paper estimated the volatility of wheat returns through the symmetric
111 and asymmetric models. The symmetric volatility models consist of the GARCH (1, 1) and GARCH in mean
112 (GARCH-M (1, 1)), while the asymmetric volatility models are Threshold GARCH (TGARCH (1, 1)) and
113 Exponential GARCH (EGARCH (1, 1)). A significant contribution of this paper as far as modeling of corn
114 return volatility is concerned, is that it considers structural breaks. Apart from this, the volatility modeling
115 approach adopted has made it possible to accommodate the time-varying conditional heteroscedasticity of wheat
116 price return and also evaluate the mean-reverting property of the wheat return volatility. The mean and variance
117 equations for the GARCH (1, 1) model are presented as follows: () 5 , 2 2 , 1 1 1 t t t R t R t B B ? ? ? ? ? μ ?
118 + + + ? + = ?() 7 2 2 1 1 1 2 2 1 0 t R t R t B B ? ? ? ? ? ? ? + + + + + = ?

119 As said earlier, the asymmetric volatility models considered are TGARCH (1, 1) and EGARCH (1, 1). The
120 two models have their mean equation as shown in equation (??) and the variance equations are specified as
121 follows: () () () 8 2 1 2 1 2 1 2 1 2 ? ? ? ? + + + = t t t t t t In In ? ? ? ? ? ? ? μ ?

122 The variance of the EGARCH model is specified in equation (??), while the variance of the TGARCH
123 model is expressed as: () 3 and 4 show the results of the several volatility models for both systematic and
124 idiosyncratic volatility forms. The implication of the results is that, the variance process reverts to its mean
125 slowly for all the models and irrespective of the volatility form. This is inferred from the addition of the ARCH
126 and GARCH effects of the variance equations that are close to one, therefore indicating that the variance process
127 reverts slowly although the systematic volatility form reverts quickly than the idiosyncratic one. The slow mean
128 reverting process is an indication of high level of volatility persistence in the price of wheat. In this case, price
129 of wheat with intense idiosyncratic volatility appear more persistent than that with systematic volatility. The
130 findings are consistent with the descriptive statistics presented in Table 1.9 1 2 1 2 1 2 2 1 1 0 2 ? ? ? ? + + +
131 = t t t t t I ? ? ? ? ? ? ? Where 1 1 = ? t I if 0 1 ? ? t

132 Comparing the performance of the two volatility forms given the models, the GARCH (1, 1) model appears
133 to produce a better fit over the GARCH in mean (GARCH-M (1, 1)) model for the symmetric volatility models.
134 This is reached with the SIC value. This is not striking as such, as the inclusion of the coefficients on the standard
135 deviation of the wheat price returns in the conditional mean equation, is statistically not significant and therefore,
136 does not provide any useful information as to the volatility models (i.e. systematic and idiosyncratic models).
137 Similarly, the estimates of TGARCH (1, 1) provide an inferior result when compared to the EGARCH (1, 1) for
138 the case of asymmetric. In all, the EGARCH (1, 1) model offers a better fit when compare to the GARCH (1,
139 1) in the symmetric case.

140 In addition, the results of the EGARCH model suggest that there are leverage effects in both volatility models
141 -idiosyncratic and systematic volatility forms. This is inferred from the findings, as the variable measuring the
142 leverage effects is negative for both return volatility forms. The implication therefore, is that negative shocks
143 have tendency of reducing volatility more than positive shocks in the wheat market. It also show that investors
144 in the wheat market react more to bad news, as bad news has immense potential of increasing volatility than
145 good news.

146 In the descriptive statistics, it is evident that there is presence of ARCH effects in the return volatility series
147 (i.e. systematic and idiosyncratic volatility); thus, necessitating the estimation of the post-estimation diagnostic
148 tests to ascertain if the volatility models have accommodated the effects. These is the reason why the ARCH
149 tests is conducted using both F-test and chisquare distributed () 2 nR test. The results show that in all
150 the estimations the acceptance of the null hypothesis of no ARCH effects is appropriate. All the values are
151 statistically not significant. Summarily, the findings show that with structural breaks in volatility series, the
152 exponential GARCH (EGARCH (1, 1)) is superior to other GARCH variants considered in the paper. Hence,
153 more appropriate to model volatility of wheat returns, more specifically in period of structural shifts. IV.

154 4 Concluding Remarks

155 Modeling volatility of wheat returns provides crucial information to investors and actors, more particularly; it
156 reveals the level of persistence in volatility risk in the price of wheat. In essence, variability in wheat prices
157 implies significant losses (gains) in investments and therefore, decreases (increases) returns of investors in wheat
158 prices. As a profit maximizing investor, with a risk averse investment interest, the incidence of persistent high
159 volatility will impact on the diversification of investor's portfolio either to a less risky assets or to more volatile
160 asset class. Therefore, testing for persistence in wheat returns volatility has major policy relevance for investors
161 and investors in agricultural produces.

162 The NP unit root test procedure shows that there are two structural breaks in wheat returns volatility.
163 These occur in 2016 and 2018, respectively. These two seasonal shifts substantially affected wheat prices and
164 consequently its volume of investment. The estimations show that there is persistence in the wheat returns

4 CONCLUDING REMARKS

165 volatility irrespective of volatility types. However, the idiosyncratic volatility type appears more persistent than
 166 systematic volatility. The results also show the evidence of leverage effects in both volatility types, and therefore,
 167 investors in wheat prices react to news differently. More importantly, the findings show that bad news has the
 168 possibility of increasing volatility in the returns of wheat prices than good news. Furthermore, relatively, the
 169 asymmetric models seem more appropriate in modeling stock return volatility than the symmetric approach.
 170 Particularly, the exponential GARCH (EGARCH) model produces the best fit and therefore, the paper proposes
 171 that the EGARCH should be considered when dealing with wheat return volatility modeling. In sum, the paper
 172 recommends the consideration of asymmetric effects as well as structural shifts when modeling wheat return
 volatility. ¹

1

Panel A: Summary Statistics					
Details	Mean	Median	StdDev	Coef.V	SkewnessJB
SVolew	0.0201	0.0203	0.0112	0.2783	- 1.0123
SVolvw	0.0157	0.0184	0.0083	0.3674	- 0.1045 1.0104
IVolew	0.0113	0.0146	0.0078	0.3106	- 0.0827 2.0112
IVolvw	0.0786	0.0073	0.0049	0.2984	- 0.0549 2.0062
					0.0378
Panel B: Correlation Statistics					
SVolew	SVolew	SVolvw	IVolew	IVolvw	
SVolew	1				
SVolvw	0.8016	1			
IVolew	0.8439	0.5533	1		
IVolvw	0.7155	0.7921	0.7309	1	
Panel C: Autocorrelation Table					
1 ?	SVolew	SVolvw	IVolew	IVolvw	
?	0.524	0.457	0.723	0.689	
?	3 0.446	0.343	0.682	0.622	
?	6 0.208	0.198	0.514	0.595	
?	9 0.195	0.124	0.483	0.479	
12 ?	0.183	0.153	0.43	0.374	

[Note: Source: Author's computation and compilation]

Figure 1: Table 1 :

173

2

$$\begin{array}{ccccccccc} ? & 2 & = & ? & 0 & + & ? & 1 & 2 & + ? & 2 & ? & 2 & ; \\ t & & & & & & ? & ? & & & & & ? \\ & & & & & & 1 & & & & & & 1 \\ & & & & & & t & & & & & & t \end{array}$$

TB i (= Where) 2 , 1 represented the selected breaks (see 1 , = t i B if i TB t ? and zero other wise)

Table 2). Note that

$$\begin{array}{c} t ? i t e \text{ and } t e \text{ is standard} \\ ? \\ = \end{array}$$

normally distributed with unit variance. The GARCH in

Figure 2: Table 2 :

4 CONCLUDING REMARKS

3

Variable	Asymmetric Models	Symmetric Models	GARCH	GARCH-M
Value	EGARCH (1, 1)	TGARCH (1, 1)	(1,1)	(1, 1)
Weighted Estimates				
Mean Equation				
Alpha	0.0041 (0.8322)	0.0005 (0.5722)	0.0002 (0.4276)	-0.0002 (-0.3081)
Beta	-0.0089 (-1.6149)	-0.0208 (-1.9803)	-0.0112 (-1.2102)	-0.0039 (-1.0527)
Delta	3.29*10^7 (3.2984)**	0.0008 (3.2097)**	0.0001 (2.7812)**	0.0003 (2.8133)**
Theta	0.0003 (0.4282)	0.0003 (0.4435)	0.0003 (0.4219)	0.0004 (0.2172)
Conditional Variance Equation	-	-	-	0.0259 (1.0056)
Alpha	-0.2064 8.1508)*	(- 4.29*10^5 (3.8923)*	4.98*10^5 (3.2091)*	4.88*10^5 (3.8730)*
Beta	-	0.0592 (6.9831)*	0.0278 (10.5470)*	0.0309 (12.7760)*
Lamda	-	0.8217 (9.0023)*	0.7437 (8.6727)*	0.8014 (10.0598)*
Phile	-	0.0049 (0.7638)	-	-
Rho	0.1472 (10.2086)*	-	-	-
Tau	-0.0142 2.6591)**	(- -	-	-
Sigma	0.7739 (5.4028)*	-	-	-
Diagnostic Statistics				
AIC	-4.9935	-4.9320	-4.9109	-4.9106
SIC	-4.8931	-4.8856	-4.9086	-4.9083
HQC	-4.8826	-4.8811	-4.9101	-4.9078
ARCH Test (7)	LM			
F-Test	1.8069	1.5572	1.7209	1.7091
nR^2	1.8609	6.0982	5.8044	7.2206
No of Observation	884	884	884	884
Equal Weighted Estimates	EGARCH (1, 1)	TGARCH (1, 1)	GARCH (1,1)	GARCH-M (1, 1)
Mean Equation				
Alpha	0.0027 (0.7062)	0.0004 (0.2092)	0.0002 (0.4276)	-0.0002 (-0.3081)
Beta	-0.0089 (-1.7140)	-0.0318 (-1.2803)	-0.0112 (-1.2102)	-0.0039 (-1.0527)
Delta	2.42*10^6 (3.5491)**	0.0006 (2.9473)**	0.0001 (2.7812)**	0.0003 (2.8133)**
Theta	0.0002 (0.5009)	0.0008 (0.3851)	0.0003 (0.4219)	0.0004 (0.2172)
CVariance	-	-	-	0.0259 (1.0056)

Testing for Volatility Persistence in Wheat Prices: Is Idiosyncratic Source Matters?

Variable	Asymmetric Models	Symmetric Models		Year		
				2019		
Value Weighted Estimates	EGARCH (1, 1)	TGARCH (1, 1)	GARCH (1, 1)	GARCH-M (1, 1)		
Mean Equation	-0.0001 (-0.7082)	-0.0002 (0.4278)	(-0.0402 (0.2246))	4.02*10^6 (1.1031)	Volume XIX	
Alpha Beta	0.0375 (3.1091)*	(3.0803)* (0.0005 (2.0192)**)	0.0204 (3.0214)*	0.0339 (2.8793)**	Is-sue	
Delta Theta	Conditional Variance Variance Equation Alpha	0.0007 (2.2004)** 0.0003 (0.5089) -0.2117 (-10.1218)*	(2.0192)** 0.0004 (0.7058) 5.28*10^5 (5.2203)* (6.6201)*	0.0007 (2.8503)** 0.0006 (0.6739) 4.58*10^5 (1.1576) 4.37*10^5 (5.9030)*	0.0014 (2.0103)** 0.0004 (0.6544) -0.0518 (-0.0518) 1.1576 4.37*10^5 (5.9030)*	II Ver-sion I (-)
Beta Lamda	-	0.0849 (4.1991)* 0.7907 (9.1241)*	0.0583 (12.6220)* 0.8828 (9.8932)*	0.0679 (15.3260)* 0.8812 (12.1438)*	() G	
Phile Rho Tau	-0.1784 (7.0056)*	0.0209 (3.7855)*	—4.9310 4.9196 -4.9275	—4.9192 -4.9190 -4.9107	Global Jour-	
Sigma Diagnostic Statistics	AIC SIC HQC ARCH	-0.0125 (-3.6071)*	(-4.9180 4.8836 -4.8902	0.2147 0.2134 884 GARCH 884 GARCH	0.3421 0.3586 884 GARCH of	
LM Test F-Test	nR^2 No of Observation	0.5639 (3.4918)*	0.2682 0.2676 884 TGARCH (1, 1)	M (1, 1)	Man- age- ment	
Equal Weighted Estimates	-4.9735 -4.9383 -4.9306 0.0372 0.0369 884 EGARCH (1, 1)				and Busi- ness Re- search	
Mean Equation						
Alpha	-0.0002 (-0.6983)	-0.0003 (0.5308)	(- 4.02*10^6 (0.2246))	0.0007 (1.1031)		
Beta	0.0328 (3.0119)*	0.0396 (3.0874)*	0.0204 (3.0214)*	0.0339 (2.8793)**		
Delta	0.0006 (2.3204)**	0.0004 (2.1196)**	0.0007 (2.8503)**	0.0014 (2.0103)**		
Theta	0.0002 (0.6129)	0.0003 (0.8858)	0.0006 (0.6739)	0.0004 (0.6544)		

© 2019 Global
Journals

[Note: Note: *, ** indicate 1% and 5% levels of significance.]

Figure 4: Table 4 :

4 CONCLUDING REMARKS

174 [Narayan and Popp ()] 'A new unit root test with two structural breaks in level and slope at unknown time'. P
175 K Narayan , S Popp . *Journal of Applied Statistics* 2010. 37 (9) p. .

176 [Bali and Cakici ()] 'Aggregate idiosyncratic risk and market returns'. T G Bali , N Cakici . *Journal of Investment
177 Management* 2006. 4 (4) .

178 [Bekaert et al. ()] *Aggregate idiosyncratic volatility*, G Bekaert , R J Hodrick , X & zhang . 2010. Columbia
179 University (Unpublished Working Paper)

180 [Clayton et al. ()] 'Are beta, firm size, liquidity and idiosyncratic volatility related to stock returns? Australian
181 Evidence'. L Clayton , M Dempsey , M Veeraraghavan . *Working Paper Series* 2006.

182 [Narrea and Ward ()] 'Does idiosyncratic risk matter? Evidence from the Philippine Stock Market'. G V Narrea
183 , B D Ward . *Asian Journal of Business and Accounting* 2009. 2 (1&2) p. .

184 [Aliyu ()] 'Does inflation has an impact on stock returns and volatility? Evidence from Nigeria and Ghana'. U R
185 Aliyu . *International Conference on Economics and Finance Research IPEDR* 2011. 2011. IACSIT Press. 4.

186 [Drew et al. ()] 'Equity premium: Does it exists? Evidence from Germany and United Kingdom'. M E Drew ,
187 M Mallin , T Naughton , M Veeraraghavan . *Studies in Economics and Finance* 2006. 23 (2) p. .

188 [French et al. ()] 'Expected stock returns and volatility'. K French , G W Schwert , R Stambaugh . *Journal of
189 Financial Economics* 1987. 19 p. .

190 [Minot ()] 'Food price volatility in sub-Saharan Africa: Has it really increased?'. N Minot . *Food Poicy* 2014. 45
191 p. .

192 [Wilhelmsson ()] 'GARCH forecasting performance under different distribution assumptions'. A Wilhelmsson .
193 *Journal of Forecasting* 2006. 25 p. .

194 [Campbell et al. ()] 'Have individual stocks become more volatile? An empirical exploration of idiosyncratic
195 risk'. J Y Campbell , M Lettau , B G Malkiel , Y & xu . *Journal of Finance* 2001. 56 p. .

196 [Gilbert ()] 'How to understand high food prices'. C L Gilbert . *Journal of Agricultural Economics* 2010. 61 p. .

197 [Dempsey et al. ()] 'Idiosyncratic risk and Australian equity returns'. M Dempsey , M E Drew , M Veeraraghavan
198 . *Working Paper series* 2001. Griffin University

199 [Hamao et al. ()] *Idiosyncratic risk and creative destruction in Japan*, Y Hamao , J Mei , Y Xu . 2003.
200 (Unpublished Working Paper, NBER)

201 [Malkiel and Xu ()] *Idiosyncratic risk and security returns*, B G Malkiel , Y Xu . 2006. Princeton University &
202 The University of Texas at Dallas

203 [Goyal and Santa-Clara ()] 'Idiosyncratic risk matters!'. A Goyal , P Santa-Clara . *Journal of Finance* 2003. 58
204 p. .

205 [Gao et al. ()] *Investor sentiment and idiosyncratic risk puzzle*, X Gao , J Yu , Y & yuan . 2010. Hong Kong.
206 University of Hong Kong (Working paper series)

207 [Brockman et al. ()] *Is idiosyncratic volatility prices? The international evidence*, P Brockman , M G Schutte ,
208 W & yu . 2010. Michigan Tech University

209 [Bekaert et al. ()] *Is there a trend in idiosyncratic volatility? Paper presented at the AFA 2009 San Francisco
210 meetings*, G Bekaert , R J Hodrick , X Zhang . 2009. San Francisco.

211 [Liu and Narayan ()] R Liu , P K Narayan . *A new structural break unit root test based on a GARCH model*,
212 2010.

213 [Kalu ()] *Modelling stock returns volatility in Nigeria using GARCH models*, E O Kalu . 2008. Nigeria.
214 Department of Banking and Finance, University of Nigeria, Enugu Campus, Enugu State

215 [Mustapha ()] S A Mustapha . *Asset Volatility and Pricing in the Nigerian Stock Market*, (Benin City, Nigeria)
216 2015. Department of Economics and Statistics, University of Benin (PhD Thesis)

217 [NSE factbook ()] *NSE factbook*, (Nigerian Stock Exchange) 2012. 2012. (Edition)

218 [Fu ()] 'Risk and the cross section of expected stock returns'. F Fu . *Journal of Financial Economics* 2009. 91 p.
219 .

220 [Mustapha ()] *Stock (Mis) Pricing and Investment Dynamics in Africa" Evidence from African Equities*, S A
221 Mustapha . 2017. Cote D'Ivoire, Abidjan: African Development Bank Headquarters. (African Development
222 Bank Working Paper Series)

223 [Emenuga ()] *Systematic factors and returns on equities in the Nigerian Securities Market*, C A Emenuga . 1994.
224 Nigeria. Department of Economics, University of Ibadan (Unpublished PhD Thesis)

225 [Ang et al. ()] 'The cross section of volatility and expected returns'. A Ang , R J Hodrick , Y Xing , X Zhang .
226 *Journal of Finance* 2006. 61 (1) p. .

227 [Campbell et al. ()] *The econometrics of financial markets*, J Y Campbell , A W Lo , C A Mackinlay . 1997.
228 Princeton -New Jersey: Princeton University Press.

4 CONCLUDING REMARKS

229 [Brandt et al. ()] 'The idiosyncratic volatility puzzle: Time trend or speculative episodes?'. M W Brandt , A
230 Brav , J Graham , A Kumar . *Review of Financial Studies* 2009. 23 (2) p. .

231 [Lundblad ()] 'The risk return tradeoff in the long run'. C Lundblad . *Journal of Financial Economics* 2007. 85
232 p. .

233 [Brockman ()] *The time series behavior and pricing of idiosyncratic volatility: Evidence from 1926 to 1962.*
234 *Working Paper series*, P Brockman , Yan , XS . 2008. University of Missouri -Columbia

235 [Wei and Zhang ()] 'Why did individual stocks become more volatile?'. S X Wei , C Zhang . *Journal of Business*
236 2005. 79 (1) p. .