

1 The Profitability of Fish Production by Co-Operative Society 2 Members in Rivers State, Nigeria

3 George, Sotonye M. D.¹

4 ¹ Obong University

5 *Received: 12 November 2020 Accepted: 3 December 2020 Published: 15 December 2020*

6

7 **Abstract**

8 Fishing is predominantly the major occupation of Rivers State people, and there is the general
9 belief that it has the prospects of booming their welfare. Unfortunately, the vibrancy and
10 growth of the sector are yet to be realized due to certain constraints. Thus, most fishermen
11 had to join the various cooperative societies as a way of mitigating the challenges of fishing
12 business in order to harness the profitability of the sector. This study investigated the
13 profitability of fish production among members of cooperative societies in Rivers State,
14 Nigeria.

15

16 **Index terms**— fish production, fishing, fishermen, cooperative fish farmers, cooperative societies
17 The Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria
18 George, Sotonye M. D.

19 Abstract-Fishing is predominantly the major occupation of Rivers State people, and there is the general belief
20 that it has the prospects of booming their welfare. Unfortunately, the vibrancy and growth of the sector are yet
21 to be realized due to certain constraints. Thus, most fishermen had to join the various cooperative societies as a
22 way of mitigating the challenges of fishing business in order to harness the profitability of the sector. This study
23 investigated the profitability of fish production among members of cooperative societies in Rivers State, Nigeria.
24 The study is based on survey research design where data were collected using questionnaires as the instrument of
25 data collection. A total of 400 copies of the questionnaire were distributed to cooperative fish farmers in Sixteen
26 (16) LGAs of four (4) Agric zones in Rivers State. Based on data from the field survey, the study employed the
27 Cost and Return Analysis as well as Descriptive Statistics to determine the profitability of fish production, the
28 Pearson Product Moment Correlation Analysis to establish the strength and direction of relationship between
29 fish profitability and fish output, while inferential (OLS regression) statistical method was used to analyse data
30 in line with the objectives of the study. The results show that fish production among members of cooperative
31 societies in Rivers State is a highly profitable venture, and that fish profitability and fish output are positively
32 correlated to a higher degree.

33 The study further shows that fishery investment and revenues contribute positively to the profit of cooperative
34 fish farmers, whereas high cost of fishing inputs; lack of sufficient capital; poor catch; poor sales and oil/industrial
35 pollution are the major fish production constraints in the area. Based on these findings, the study recommends
36 among other things that the government of Rivers State should make provisions for fish production subsidies
37 such as fund and some strategic modern fishing inputs while encouraging investment in fishery business through
38 the provision of low-interest loans to the cooperatives.

39 **1 Introduction a) Background of the Study**

40 Fisheries constitute an important sector in Nigerian agriculture, providing valuable food and employment to
41 millions and also serving as a source of livelihoods mainly for rural dwellers in coastal communities. Fishing is
42 also an important contribution to world protein as it serves as a supplement for animal protein especially as the
43 cost of affording animals seems to be beyond the reach of an average income earner ??Kimathi, Ibuathu & Guyo,
44 2013). Nigeria has a coastline of ??,122km (Earth trends, 2003) shared by 8 states (Lagos, Ogun, Ondo, Delta,

3 B) STATEMENT OF THE PROBLEM

45 Bayelsa, Rivers, Akwa-Ibom and Cross River) out of a total of 36 states in the country, and this coastal fisheries
46 are important and contribute at least 40 percent of fish production from all sources in Nigeria between 1995 and
47 2008 ??FAO, 2010).

48 According to the Fisheries Society of Nigeria (2013), small scale fisheries provide more than 82 percent of the
49 domestic fish supply, giving livelihoods to one million fishermen and up to 5.8 million fisher folks in the secondary
50 sector comprising processing, preservation, marketing, and distribution. The total contribution of fisheries to
51 Nigeria's gross domestic product is estimated at about US \$1 billion (CBN, 2015). In any case, the demand for
52 fish in Nigeria mostly outstrips the local production. Nigeria is the largest fish consumer in Africa and among the
53 largest fish consumers in the world with over 1.5 million tons of fish consumed annually. Yet, Nigeria imports over
54 900,000 metric tons of fish while its domestic catch is estimated at 450,000 metric tons/year (Ozigbo, Anyadike,
55 Forolunsho, Okechukwu & Kolawole, 2013). inland and marine small-scale fisheries provide over one-third of
56 the world's food fish supplies. They offer employment and livelihood to millions of fishermen, their families and
57 associated workers. In contrast to company-owned and other large-scale industrialized fisheries, they use more
58 indigenous resources and demand less expenditure in energy, equipment, infrastructure, and foreign currency.
59 They often show a better cost/benefit ratio than the large-scale fisheries, more effectively contribute to national
60 self-reliance and the national economy and, in most cases, produce more social benefits (George, 2020).

61 2 I

62 The fishery activities in Nigeria are mainly done by the artisanal sector, the coastal and the brackish water
63 constitutes the major areas of production, followed by the inland rivers and lakes. Aquaculture production and
64 industrial fishing are still at its very low ebb ??William, 2006). Consequent to this, domestic fish supply usually
65 fell short of demand, accounting for a high import of about 50 percent fish consumed in Nigeria. In actual fact,
66 since 1987, there has been a yawning gap between domestic demand of 1.5 million metric tons and domestic
67 supply of 0.5 million metric tons ??CBN, 2015). Initially, this demand-supply gap was not noticeable when the
68 economy was buoyant as a result of the importation of frozen fish. However, the present economic recession
69 and scarcity of foreign exchange to pay for imports have necessitated the need to step-up production through
70 aquaculture. The huge import bill on frozen fish by the Federal Government of Nigeria which amounted to N30
71 billion (\$400m) in the year 2002 alone calls for urgent attention in the area of artisanal and aquaculture. In the
72 same vein, the growing urbanization, improved market integration and the concurrent supply crises from capture
73 fisheries, small and larger-scale investment are gaining interest in aquaculture production which provides a source
74 of income rather than simple subsistence, and can be incorporated into local agricultural systems to diversify
75 production base (Baruwa, Tijani & Adejobi, 2012).

76 However, the needed vibrancy and growth in the sector have not been realized due to certain constraints.
77 Easily identifiable here are poor infrastructures, high level of rural poverty (over 80% of rural poor live below
78 the poverty line), environmental problems (e.g. pollution in coastal areas arising from gas flaring, oil spills
79 and industrial wastes), civil unrest in the Niger Delta, climate change effects (sea-level rise, coastal erosion
80 and flooding, increased environmental temperatures and wind storms) and degradation of coastal areas through
81 human action (e.g. sand filling that destroys breeding grounds). Indeed, these may have been responsible for the
82 reluctance of investors to move into the sector. However, high prices of the various fish species such as catfish
83 and tilapia and the size of the fish consuming population are indicators that fish farming could still be a viable
84 and worthwhile investment. Attempts made to identify constraints affecting the aquaculture subsector in Nigeria
85 ??FAO, 2000) revealed the tendency to consider fish farming as a foreign donor-driven technology, characterized
86 by multi-dimensional in-built constraints. Similarly, In yang ??2001) noted that these purported constraints were
87 sitespecific and that the envisaged solutions to them were deemed to be above the ability and circumstances of
88 the largely small-scale fish farmers who were more familiar with artisanal and inland fishing activities.

89 It is against this background that the study examines the profitability of fish production among members of
90 cooperative societies in Rivers State, Nigeria.

91 3 b) Statement of the Problem

92 The Nigerian government has recognized the importance of the fishery sub-sector and has, over the years, made
93 several attempts to increase its fish output and productivity of fishermen through institutional reforms and various
94 economic measures aimed at addressing challenges bedevilling the sub-sector. Indeed, there is a subsisting policy
95 of the government to make fishery and fishing in the country profitable. However, in spite of these efforts, there
96 is a paucity of investments and a low level of fish production (FAO, 2014). Many believe that the low level of fish
97 production is due to resource use constraints such as feed supplies, low managerial skills, low start-up capital,
98 etc, which have retarded the pace of development in the fish farming sub-sector. Other constraints include poor
99 infrastructures, high level of rural poverty (over 80% of rural poor live below the poverty line), environmental
100 problems (e.g. pollution in coastal areas arising from gas flaring, oil spills and industrial wastes), civil unrest
101 in the Niger Delta, climate change effects (sea-level rise, coastal erosion and flooding, increased environmental
102 temperatures and wind storms) and degradation of coastal areas through human action (e.g. sand filling that
103 destroys breeding grounds). Also, attempts made to identify constraints affecting the aquaculture subsector
104 in Nigeria ??FAO, 2000) revealed the tendency to consider fish farming as a foreign donor-driven technology,

105 characterized by multi-dimensional in-built constraints. Similarly, Inyang (2001) noted that these purported
106 constraints were site-specific and that the envisaged solutions to them were deemed to be above the ability and
107 circumstances of the largely small-scale fish farmers who were more familiar with artisanal and inland fishing
108 activities.

109 Fishing is traditionally the major occupation of Rivers people, and there is the general belief that it has the
110 prospect of booming the welfare of the youths in the area. However, the needed vibrancy and growth in the
111 sector have not been realized due to certain constraints. The most prominent constraints are the perishability
112 of fresh fish and lack of information about the management of the industry by the artisans ??Sarch & Allison,
113 2000). For instance, small-scale fishers may not have the financial management skill to adequately manage their
114 resources to optimize their revenue, and hence their profit. Indeed, these constraints may have been responsible
115 for the reluctance of investors to move into the sector. However, high prices of the various fish species such as
116 catfish and tilapia, as well as the size of fish consuming population are indicators that fish farming could still be a
117 viable and worthwhile investment. Taking this situation into consideration, there is no doubt that Nigeria needs
118 to rise beyond the level of subsistence to a higher level of profitability through more efficient use of its productive
119 resources. Interestingly, a platform for this is presently being offered by the plethora of fishery cooperatives in
120 the area. Many people joined cooperative as a means of mitigating the challenges of fishing business and there
121 is the conventional belief that fishery cooperatives have a big role to play in raising the profitability of artisanal
122 fishers.

123 Since many fishermen joined cooperative as a means of increasing their profitability, there is a need to
124 investigate the profitability of fish production among members of cooperative societies in Rivers State. However,
125 a number of studies have been carried out on the profitability of fish production in some states in Nigeria like
126 Abia, Kwara, Ogun, Oyo, Imo, Osun, Kano, Delta, and Kaduna states (see ??heke Kudi, Bako & Atala, 2008),
127 but there seems to be dearth of studies on fish production among cooperative societies, especially in Rivers state.
128 Hence, the present study is considered timely and important because of the limited literature on fish farming
129 among cooperatives in River state. More importantly, a study of this nature has not been done in Rivers State
130 despite its peculiar fishing context.

131 **4 c) Objectives of the Study**

132 The broad objective of the study is to determine the profitability of fish production among members of cooperative
133 societies in Rivers State, Nigeria.

134 The specific objectives are to: i.
135 Analyse the socioeconomic characteristics of cooperative fish farmers in Rivers state. ii.
136 Determine the profitability of fish business among cooperative fish farmers in Rivers state. iii.
137 Examine the influence of fishery investments and revenues on the profit of the fish farmers in Rivers state. iv.
138 Evaluate the influence of members' socioeconomic characteristics on the profit of the fish farmers in Rivers state.
139 v. Ascertain the effect of fish production constraints on the profit of the fish farmers in Rivers state.

140 **5 d) Research Questions**

141 This study was guided by the following research questions:

142 i.
143 What are the socioeconomic characteristics of the cooperative fish farmers in Rivers state? ii.
144 What is the profitability of fish business among cooperative fish farmers in Rivers state?
145 iii.
146 To what extent is profit margin influenced by fishery investments and revenues in Rivers state? iv.
147 To what extent is profit margin influenced by the socio-economic characteristics of members in Rivers state?
148 v.
149 To what extent is profit margin affected by fish production constraints in Rivers state?

150 **6 e) Study Hypotheses**

151 The following hypotheses were formulated to guide the study.

152 H 0 : Fish business does not significantly generate profit to cooperative fish farmers in Rivers state. H 1 : Fish
153 business significantly generates profit to cooperative fish farmers in Rivers state. H 0 : Fishery investments and
154 revenues have no significant influence on profit margin in Rivers state. H 1 : Fishery investments and revenues
155 have a significant influence on profit margin in Rivers state. H 0 : Members' socio-economic characteristics do
156 not have a significant effect on profit margin in Rivers state. H 1 : Members' socio-economic characteristics have
157 a significant effect on profit margin in Rivers state. H 0 : Fish production constraints do not have a significant
158 effect on profit margin in Rivers state. H 1 : Fish production constraints have a significant effect on profit margin
159 in Rivers state.

160 **7 f) Significance of the Study**

161 The study tries to determine the profitability of fish production among cooperative members in Rivers State,
162 Nigeria. The study is of both theoretical and empirical significance. Theoretically, the study is expected to add to

11 I. CONCEPT OF PROFITABILITY

163 what is already known about the theory of collaboration and its direct implication for cooperative fishery societies.
164 Empirically, the study is relevant since it collected and analysed data on fish production and its relationship with
165 cooperative membership which shows the efforts of cooperatives in promoting fishing in Rivers State.

166 The study is considered to be useful to individuals, including policymakers, lenders, and researchers. It serves
167 as reference material for policymakers who are looking for a more effective way of promoting fish production
168 among smallholder fishers. Also, researchers and scholars will benefit from it since it will add to the existing
169 literature on fishing and cooperative activities.

170 8 g) Scope of the Study

171 The study is focused on the determination of profitability of fish production among cooperative and non-
172 cooperative fishermen with an emphasis on profitability indicators and socioeconomic variables that influence
173 fishing investment. The geographical scope is Rivers State. The period scope is restricted to fishing records of
174 fishermen from 2017 -2018.

175 9 h) Limitations of the Study

176 One of the major problems facing this study is the problem of finance. A Study of this nature requires adequate
177 finance to cover its field survey. Another problem encountered is the usual uncooperative attitudes of the
178 respondents especially in filling the questionnaires. This problem was solved by putting calls across to the
179 respondents to get their opinion on the questions that were not properly filled. Most of the fishermen are less
180 than ten years as members of the cooperative society and some are migrant fishermen who migrate from one
181 fishing settlement to another.

182 10 II.

183 Review of Related Literature a) Conceptual Review

184 11 i. Concept of Profitability

185 When a seed is planted, it germinates the reason for it germinating is increase potential that is inside the seed.
186 In the same way, when money is committed to a project or business it is expected to germinate. The element of
187 germination inside the committed money is profit.

188 Profitability is the primary goal of all business ventures. Without profitability, the business will not survive in
189 the long run. So, measuring current and past profitability and projecting future profitability is very important.

190 Profitability is measured with income and expenses. Income is money generated from the activities of the
191 business. For example, if crops and livestock are produced and sold, income is generated. However, money
192 coming into the business from activities like borrowing money does not create income. This is simply a cash
193 transaction between the business and the lender to generate cash for operating the business or buying assets.
194 Expenses are the cost of resources used up or consumed by the activities of the business. For example, seed
195 corn is the expense of a farm business because it is used up in the production process. Resources such as a
196 machine whose useful life is more than one year are used up over a period of years. Repayment of a loan is not
197 an expense, it is merely a cash transfer between the business and the lender Profitability is measured with an
198 "income statement"

199 Whether you are recording profitability for the past period or projecting profitability for the coming period,
200 measuring profitability is the most important measure of the success of the business. A business that is not
201 profitable cannot survive. Conversely, a business that is highly profitable has the ability to reward its owners
202 with a large return on their investment According to ??zeh (2006), Profit is the addition to resources when it is
203 committed to the business or investment; it is realized after accounting for all expenses that helped to generate
204 the income. Normally when money is invested there is an expectation of return which is the expected return
205 or income and it is from here the profit is derived. It determines the performance of the business and project.
206 Sometimes it is added to the capital to increase revenue; this is the capital structure of a firm.

207 In order to make profits, the firm must create more cash flow than it uses. In other words, the cash coming
208 in from the various activities must be more than the money invested by the firm. This increase in the cash flow
209 over a period of time is called profit, which is usually calculated over one-year, half-year or a quarter of a year
210 ??Olagunju, Adesiyen & Ezekiel, 2017).

211 In order to generate more profits, the firm can take up what is called cost reduction. In cost reduction, by
212 using new machinery, or new ways of production, the firm tries to reduce the cost of production to the extent
213 possible. Cost reduction is considered to be one of the best techniques for profit maximization.

214 In order that cost reduction and increased production take place, a firm must utilize highly economic ways of
215 production such as the utilization of efficient techniques in production and procurement of materials in bulk from
216 suppliers, etc. All these techniques are known to decrease the cost of production and increase the profitability of
217 the firm (Kimathi, Ibuathu & Guyo, 2013).

218 However, the profitability of fish farming can be measured through several economic methods such as partial
219 measures, production function, profit function, and linear programming. Profit function can be determined

220 by budgetary analysis in ascertaining cost and returns in fish marketing. Additionally, we will look at the
221 contribution of cooperative and their role in the return of the fishing group.

222 **12 ii. Fishery and Fish Resources**

223 Generally, a fishery is an entity engaged in raising or harvesting fish which is determined by some authority to
224 be a fishery. According to the FAO, a fishery is typically defined in terms of the "people involved, species or type
225 of fish, area of water or seabed, method of fishing, class of boats, the purpose of the activities or a combination
226 of the foregoing features. The definition often includes a combination of fish and fishers in a region, the latter
227 fishing for similar species with similar gear types.

228 A fishery may involve the capture of wild fish or raising fish through farming or aquaculture. Directly or
229 indirectly, the livelihood of over 500 million people in developing countries depends on fisheries and aquaculture.
230 Overfishing, including the taking of fish beyond sustainable levels, is reducing fish stocks and employment in
231 many world regions.

232 The fishery sector is crucial to food security, poverty alleviation and well being. In 2008 the world consumed
233 115 million tons of fish and demand is expected to rise, fish and fishery products are a vital and affordable source
234 of food and high-quality protein ??FAO, 2010). They also stated that fish as food reaches an alltime high of
235 nearly 17kg per person supply over 3 billion people with at least 15 percent of their annual protein intake. Today
236 fish is the only imported food source that is still primarily gathered from the wild rather than farm with marine
237 culture. Historically accounting for greater than 80% of the world's fish supply recently, however, capture fishery
238 has not been able to keep pace with the growing demand and many marine species have already overfished.
239 Nearly half of the known ocean is completely exploited (FAO, 1999) and 70% are in need of urgent management.

240 Basically, Fish production in Nigeria is either by capture fisheries, artisanal fish farming (fish farming) or by
241 importation. Capture fisheries involve the harvesting of naturally existing stocks of wild fish. This can be done
242 either by small scale/artisanal fishers or by industrial/commercial trawlers. In artisanal fisheries, production is
243 achieved by an individual or by small groups by the use of labour-intensive gears. Characteristically artisanal
244 fishers operate from the dugout, wooden canoes that are more often than not unmotorized (Coates, 2000; Anene,
245 Eze and Oputa, 2010). Artisanal fishing accounts for more than 80 percent of the total fish production in
246 Nigeria. According to Matthew (2001), 'traditional', 'small-scale' or artisanal fisheries are used to characterize
247 those fisheries that were mainly non-mechanized with a low level of production. The term particularly applies to
248 coastal or island ethnic groups using traditional techniques such as rod and tackle, arrows and harpoons, throw
249 nets and drag nets and traditional fishing boats.

250 **13 iii. Method of Fishing**

251 The method of fishing can be single fishing, paired fishing and group fishing. They go individually, in two or
252 group of 3 or more; generally, one is the leader and he takes the largest share. The use gears such as net, hook,
253 basket, spear therefore Method of Fishing can be the approach to the fishing, and the gear they use that is to
254 say we also have method which could be the use of net and hook which can cast net, drift net , stationed hook
255 and drift hook which are applicable on deep sea, river, creek and stream. Any of the procedure has its unique
256 features which the people living in coastal area always apply as they go out in search of fish.

257 The method includes throwing net, dragging net along the current flow or against it, they throw spear, they
258 sink hook either singly or as a group of hook line iv.

259 Single Approach This is when a single fisherman goes out for fishing without any company. He can use any of
260 the gear whether net or hook with boat and paddle using his experience to observe the breeding pattern of fish.

261 **14 v. Group Approach**

262 Here, fishermen go out to fishing in groups which could be group of two, three or four or even more and one must
263 be the leader of the group who will be responsible for the group the leader sometimes is the owner of the boat.
264 In the traditional setting fishermen observe the fish breeding method, it's movement and movement of the river
265 to make the capture, they waiting for fish to move into the net or hook before they can drag them.

266 **15 vi. The Net Method**

267 The net is used to trap the fish; this method can be divided into cast net and drift net. a) Cast net: the net is
268 thrown on on-coming fish for capture. b) Drift net: this method is used to cover a wide area for the fish to flow
269 into, the drift net flows with the water and on-coming fish are trapped between the tread of the net. dragging
270 net along the current flow or against it

271 **16 vii. The Hook Method**

272 The hook is like a trap which are submerged with bait for the fish to eat, and this can be divided into stationed
273 hook and drift hook; they throw spear to big fish that tries to give them tough time. a. Stationed hook: the
274 hook is submerged with bait for the fish and the fisherman wait patiently for the fish to eat the bait. b. Drift

275 hook: here the hook kept in the river and allowed to flow while the fisherman return back later to check on the
276 hooks.

277 17 viii. Fish timing method

278 There is another important aspect of fishing method; this is fish timing. Most of the fishermen take long trip
279 into the coastal area in search for fish; sometimes they stay days, weeks or even month and when they return,
280 they sell their catch to waiting women. They study the tide and the period fish will be available. The knowledge
281 of this makes fishermen to make fishing exploit.

282 18 ix. Women in Fish Production

283 Women in fish production had been mainly in the marketing of fishery products than processing or active fishing.
284 Their involvement includes picking of shell fishes such as oyster, periwinkle at low tide than fishing in creeks
285 and rivers. Fish processing in these communities are done mostly by smoking using a standing oven which can
286 dry a lot of fish at a time. The marketing strategies adopted by most women in selling their fishery products
287 in the area are open market display and hawking, although, some sell their catch at landing jetties to buyers.
288 Lack of credit facilities, poor transportation network and upsurge in criminal activities have been identified as
289 major constraints facing women involvement in fishery activities in these areas. There is therefore, the need to
290 empower the women fisher folks in these areas through granting of loans and credit facilities, capacity building,
291 introduction of new technologies and improved transport network systems. These will go a long way in boosting
292 fish production, improve their livelihood and enhance socio-economic status of the women fisher folks in the
293 coastal communities.

294 The fisheries sub-sector is a significant source of fish food and livelihood for many people living in the coastal
295 communities, as it supplies animal protein necessary for growth and income for many households in these rural
296 communities ??Akinrotimi et al., 2007). According to Akinrotimi, et al (2015) Women have been reported to
297 play a vital role in fishery related activities around the world, especially in the coastal environment, where
298 these activities are classified majorly in three ways; fishing, processing and marketing (Olufayo, 2012). Though,
299 fish production is customarily considered as masculine venture, women role in fish related activities is though
300 supportive, is imperative and indispensable (Cliffe et al., 2011); their role in food production, like coastal fishery
301 has become more relevant as a way of reducing poverty and enhancing food security ??Akinrotimi, et al 2015).

302 This had been noted in fishing communities of how women participate actively in fisheries and also play a part
303 in the maintenance of their families (Nwabuze et al., 2013) and in many parts of the world, that women have
304 engaged actively in fish business even in European countries for instance, women control 39% of the fish industry,
305 making a huge amount of money for themselves and their families ??Aquilas, 2002).

306 However, their role is repeatedly being ignored and relegated, consequent of primordial systems of social
307 setting, that is prevalent in the rural areas of many developing countries like Nigeria ??Ibrahim et al., 2011).

308 Fisheries is an important activity, that is predominant in the coastal areas of Rivers State, the role of women
309 in fisheries related activities in these areas are very crucial and critical to the overall economy of the state but
310 policy maker usually overlook the important role that women play in fisheries activities.

311 19 x. Marketing of Fish Product

312 Fish marketing is to ensure the flow of fish from fish farmers to consumer in the form, time and place that will be
313 convenient. This involves some other players along the fish distribution channel especially the middlemen (Lawal
314 and Idege, 2004). According to Kottler (2002) marketing is a societal process through which individual and group
315 obtain what they need and want through creating offering and freely exchanging of product and services of value
316 with others. Adekanye (1988) opined that marketing is a method used to bring the interpersonal forces of demand
317 and supply together irrespective of the location of the market. This can be sustained by the application of various
318 pricing criteria on sales of fish which depends on efficiency with which the marketing system transit information
319 among fish mongers as it passes through middlemen Marketing of fish passes through market participation in
320 some exchange arrangement to reach the final consumer; the participant are the wholesaler and retailer who are
321 market intermediaries. These are agent of distribution who plays a major role in the marketing system as they
322 tend to pack the fish or unpack it to meet consumer's demand. In spite of the importance of fish and the fishery
323 industry; fish is an extremely perishable product as it get spoilt immediately the fish dies due to enzymatic
324 and microbial action, resulting in disagreeable taste, smell and texture, thereby reducing consumer acceptability
325 (Brigitte et al, 1994; Garrow and James, 1994). To them a high ambient temperature of the topic is a major
326 environmental factor promoting rapid spoilage of fish. While Maddison et al ??1993) suggest that refrigerating
327 is a means of preventing the fast rate of deterioration in fish. To them careful handling is an essential step to
328 overcoming the problem of rapid fish spoilage. Therefore, to maintain freshness the fish need to be preserved or
329 processed. There are several fish processing methods which include fermentation, drying, frying, canning, salting
330 and smoking.

331 xi. Cost of Fishing Olomola (1991) found out that the costs of capture of fisheries in Nigeria were higher
332 than those of aquaculture except for the opportunity cost of family labour. Therefore, capture fisheries are more

333 labour intensive than aqua culture. Availability of fish to consumer at right time and place requires an effective
334 marketing system.

335 The cost of fishing includes the effort, the fishing gears and the craft. However, strength of searching for fish is
336 an un imputed cost that had not been recognized. The cost of fishing can be separated into capital and variable
337 as the craft and gear is the major capital cost while the food they eat and use as bait as well as maintenance
338 cost are the variable cost. These costs fluctuate with time and it depends on the fishermen.

339 Though their cost had limited their effort but fishery occupies a unique position in the agricultural sector in
340 Nigeria economy. In terms of Gross Domestic Product (GDP) the fishery sub-sector has recorded the fastest
341 growth rate in agriculture to the GDP. The contribution of fishery sub-sector at 2001 current factor cost rose
342 from N76.76 billion to N162.61 billion in 2005 (CBN, Report, 2005). Nigeria has vast network of inland water
343 like rivers flood plain, natural and manmade Lake Reservoirs ??Shimang, 2005). According to him the inland
344 waters mass is estimated to be about 12.5 million hectares of inland water capable of producing 512,000 metric
345 ton of fish annually. The cost are as follows; fish craft and gear cost.

346 **20 xii. Fish Craft**

347 Like fishing gear craft have passed through many development stage from trunk to wood, floating calabash and
348 papyrus raft to woody dugout craft, planked craft and canoes made up of fibre. All these are attempt to increase
349 the efficiency match water condition and types of gear engaged in fishing (Ambrose et al, 2001). Consequently,
350 craft are designed to match water current, shore landing, ability to keep afloat and stabilize on the water as well
351 as accommodate catch or capture. It also depends on the size of crew, gear and distance covered.

352 **21 a. Fishing Gears**

353 Fishing gear include the net such as seine net, gill net, drift net, hook, basket. All these gears are very important
354 in fishing and they pose a cost to fishing effort. There description is as follows: b. Seine net This is a kind of net
355 in which one end of the net is fixed to an anchorage while the free end is moved along to surround certain area.
356 The net is then pulled to close the fish within the area.

357 **22 c. Gill net**

358 This is a fabricated net. It is a type of fishing gear (net) used in catching fishes in the river. It is like a surrounding
359 net but that of surrounding net is very large and it has a bag net and towing lines. Gillnet is a rectangular piece
360 of netting fixed with a head line on top and usually a foot-rope at the bottom. The headline is lifted with floats
361 while the foot-pole is weighed with lead, stones and the combination of floats and weights makes it possible for
362 the net to stay upright in water.

363 **23 d. Trap net**

364 This is a type of net used mainly for catching shrimps, small fishes and crabs. The fishes are usually caught in
365 wicker baskets containing baits. These baskets are usually lowered into swallow coastal water and left for one
366 or two days before they are hauled up. Salmons which are returning to breed in rivers are sometimes caught by
367 traps placed in the mouth of rivers.

368 A trap net consists of a line of wooden stakes driven into the sea bed at the end of which is the trap. A
369 platform is usually built over the trap to enable fishermen to haul the catch.

370 **24 e. Bag net**

371 These consist of bags of netting materials usually synthetic with the mouth of the bag kept open through total
372 or partial tanning. Nets of this kind vary from the small hard or scoop net used in removing fishes from drained
373 ponds and drying up flood plains to the advanced mechanically propelled trawl nets used in industrial fisheries.

374 **25 f. Cast net**

375 This type of fishing net is conical in shape and mainly used on fishes that are easily baited e.g. Tilapia and
376 surface swimming fishes. In using this net, cassava roots are put in several locations in water and these locations
377 are pegged to the bottom water with sticks. The net is then cast in the locations where the bait (cassava roots)
378 are put.

379 **26 g. Drift net**

380 This is another type of gill net. It normally hangs vertically in the water and weighted along the bottom edge
381 and supported along the top edge by floats. Drift net are usually set without anchors and they drift with the
382 water currents. Fishes are caught by their gill becoming entangled in the mesh of the nets.

383 **27 h. Hook and lines**

384 There is a decline in the use of this method, but fishermen who use this method only engage in it mostly to catch
385 fish for domestic consumption. The fishermen numbering about 3-4 are in a relatively small boat which have
386 attached hooks at intervals of short distances to a line. Baits like earthworms, rotten fish are attached firmly to
387 the hooks for the attraction of the fish. Any fish trying to swallow the baits attached to the hooks gets itself
388 hooked up.

389 **28 i. Surrounding net**

390 This is fabricated like a set net (gill net) but is very large and has bag net and towing lines. When a good fishing
391 ground is located, the net is set to surround such a spot in form of a closed ring. This net is operated by 20-30
392 fishermen. The float line is pulled by some group of fishermen and the headline is pulled by another group of
393 fishermen while they go into their closure to pulse at the bottom of the net. After pulsing, any fish within the
394 surrounded enclosure will be caught through the bag net. It takes about 3-4 canoes to operate the surrounding
395 net.

396 **29 j. Trawlers**

397 A trawler is a large wide mouthed net which is dragged along the bottom of the sea. Trawlers are very expensive
398 thus they are not commonly owned by individual or small companies. They are mostly purchased by State or
399 Federal Fisheries Boards e.g. Lagos State Fisheries Board. The largest conventional trawlers owned by Lagos
400 State Fisheries Board do not exceed 100 ft in length. On these trawlers are large fish holds for keeping the fishes.
401 These vessels can travel several miles away from their home base holding big fishes like tilapia, cat fish, etc.

402 **30 xiii. Types of Fishing**

403 There are many types of fishing they include three types: a. Up-country fishing in rivers and lakes Nigerian
404 rivers and lakes abound in a large variety of fishes which have different local names. They are caught either with
405 fishing nets or lines. The catch is sold locally since the coastal supply does not always arrive fresh in land; the
406 local catch from the main source of fresh fish supplies the interior.

407 **31 b. Fishing creeks**

408 The local fishing industries depend on creeks. The Okrika fishermen are well known in this industry. They
409 use trap, nets and hooks while waiting for the fish to run into their gears; using mixture of method sometimes
410 gives them cooperative advantage put bait on hooks and net in the water appear to be a trap for the fish
411 which becomes easy prey for the fishermen. The catch is either eaten locally or smoked in special fish ovens for
412 commercial purposes.

413 **32 c. Lagoon and offshore fishing**

414 Since fishing in the lagoon is carried out by the same people, fishing in the lagoon and Open Ocean go hand
415 in hand. The fishermen stay in the lagoon during the day and go to the sea after the super. They return the
416 following morning with their vessel loaded with the catch. The mid-morning visitors can buy fish directly and
417 more cheaply from the fishermen than they can in the town. Vessels equipped with refrigerators are used in this
418 type of fishing.

419 **33 xiv. Implication of Fishing Techniques and Effects of crude
420 techniques**

421 As earlier discussed, crude method was the main fishing technique used by traditional or local fishermen in
422 catching their fishes from the water. However, both the technique and the fishing gears employed pose some
423 hazards to the fishes, the aquatic environment and the society at large. The use of poisons or chemicals like
424 gamalin 20, Didimore 25 and poisonous leave, roots and fruits of some toxic plants cause water pollution thereby
425 making the water unsafe for human use.

426 The use of hooks, spears, cutlasses inflicts physical damage on the fishes and this accelerates the rate of decay
427 of the fishes as a result of bacterial invasion on the damage parts.

428 The volume of catch is also reduced by the use of hook and line method. It is also time-consuming as fishermen
429 have to spend a long time on boat only to catch few fishes.

430 The use of local fish nets whose mesh sizes are not regulated or nets with undersized meshes poses dangers for
431 small young fishes especially the fingerlings, which may likely be scooped out of water prematurely.

432 **34 xv. Effects of modern techniques**

433 This method involves the use sophisticated modern equipment as fishing gears. It includes the use of fishing nets
434 with regulated mesh sizes, motor propelled machines, diesel marine engines, trawlers and ships for commercial
435 fishing. With the use of these modern fishing equipment a. More catch is registered at faster rate. b. The fishes

436 caught are safe for human consumption. c. The purity or quality of water is not affected since the water is not
437 polluted. Thus, the water is safe for drinking and for other domestic uses. d. Fishes can be stored for longer
438 period and well preserved in mobile refrigerator fishing vessels.

439 **35 xvi. Investments in fishery**

440 Investment is using the money to purchase assets in the hope that the asset will generate income over time or
441 appreciate over time. Consumption, on the other hand, is when you purchase something with the immediate
442 intent of personal use and with no expectation that it will generate money or increase in value. Investment also
443 helps grow the economy because it creates economic activity, such as the buying and selling of goods and services
444 and employing people. Employed people get paid and either save, invest, or spend their money. If they spend
445 their money, businesses make more profits. Businesses can then reinvest the profits in further business activities
446 that expand the economy.

447 Of course, too much of a good thing can be bad. If everyone is investing, then no one is consuming. If no
448 one is consuming, consumer-orientated businesses, such as restaurants and retail establishments, will suffer. This
449 may lead to layoffs. The key is to find the proper balance between investment and consumption.

450 The fishing industry is evolving and for most fishermen, knowing how to catch is no longer enough. New
451 regulations, growing demand from consumers to know where their food comes from, rising fuel prices, and
452 increasing globalization have changed the business dynamic of fishing. At the same time, with many fisheries in
453 decline, fishermen must develop new ways to fish without depleting the resource on which they depend. They
454 must innovate to survive. To be successful, they need to focus on developing their businesses as well as fishing
455 techniques. This then calls for an appropriate investment response from fishermen, especially in the marine
456 capture fisheries sub-sector.

457 Marine capture fisheries support a vital economic sector that generates significant value, employment, and food
458 security, as well as many other non-financial benefits. From an economic perspective, wild fisheries contribute
459 more than US\$270 billion to global GDP, which increases by a further US\$160 billion per year when related
460 activities, such as fish processing and boat building, are included ??World Bank, 2012). This amounts to
461 approximately 1% of global GDP. At the national level, the economic value of fisheries can be much higher,
462 representing 30% of GDP in Seychelles for example. Fish is a highly traded commodity and as such generates
463 valuable foreign exchange, particularly in developing countries. Fisheries also contribute to economies through tax
464 revenue both at the production level and through the activity of supporting sectors such as canning, processing,
465 and distribution. Globally, fisheries employ approximately 260 million people, both directly as fishers and within
466 the value chain (Teh and Sumaila, 2013). Furthermore, given the role of fishing as an important subsistence
467 and safety-net activity for many of the world's poorest communities, it is likely that millions of more people
468 are involved in, or indirectly dependent on, fishing activities than appear in official statistics. In addition to
469 their economic importance, fisheries are critical for food security, providing approximately three billion people
470 worldwide with at least 20% of their total animal protein (FAO, 2014). In some countries where there is a
471 lack of alternatives, or where a preference for fish has developed, the relative importance of fish is much higher.
472 For example, in Japan, nearly 40% of animal protein consumed is from seafood products (FAO, 2013) and the
473 catching and eating of fish plays a significant role within culture and society. Similarly, in the Maldives, a
474 country where the marine exclusive economic zone (EEZ) is over 3,000 times larger than the available landmass,
475 fish play a vital role in society, contributing over 70% of animal protein consumed (FAO, 2014). The ability of
476 wild fisheries to continue to produce fish is predicated on the continued viability of the marine ecosystems in
477 which they exist and the appropriate management of fish stocks to ensure their sustainability. The wider marine
478 environment supports fish stocks by providing breeding and nursery grounds and stable 11 food webs. Healthy
479 ecosystems are critical for the maintenance of fishing activity and, in turn, where fishing takes place, sustainable
480 management is essential for the maintenance of healthy ecosystems. In addition, healthy marine ecosystems
481 also directly benefit global populations in many other ways -for example, through regulation of climate, flood
482 defence, and tourism revenue -and therefore the importance of maintaining their health through sustainable
483 practices goes further than just fish production (Pauly, Alder, Bakun, Heileman, Kock, Mace, and Worm (2005).
484 However, despite their importance, global fisheries are an underperforming asset. The economic, social and
485 ecological functions they provide are threatened by widespread mismanagement of fishing activity. According
486 to the Food and Agriculture Organization of the United Nations (FAO), overexploitation of fish stocks has
487 depleted 30% of the world's assessed fisheries to an unproductive state (FAO, 2014). Another study estimates
488 that as the majority of fisheries have not been formally assessed, it is possible that as much as two-thirds of
489 all global fisheries are overfished (Costello, Ovando, Hilborn, Gaines, Deschenes & Lester, 2012). The effects
490 of mismanagement have already materialised in many places: communities have suffered a loss of food and
491 livelihoods; local economies have declined and the marine environment has experienced fundamental changes
492 to ecosystem functioning. For example, the collapse of the iconic cod fishery of the Canadian Grand Banks, a
493 fishery once thought to be limitless, resulted in a fundamentally changed ecosystem where it is unlikely cod will
494 recover to its historic abundance without significant intervention. As a result, the region experienced a significant
495 economic downturn and a loss of over 20,000, directly and indirectly, related jobs (Gien, 2000), as well as the
496 disappearance of a unique element of Newfoundland's cultural heritage. In the Philippines, a recent study has
497 shown that only 10% of the fish stocks remain compared to 40 years ago. This has implications for millions of

498 people who depend on fishing and are already on the poverty line. Multiple international treaties and agreements
499 recognise unsustainable fishing practices as a major global issue¹ and there is a growing response taking place to
500 encourage the transition to sustainability in multiple regions. This effort is primarily (although not exclusively)
501 being coordinated and undertaken by NGOs¹. For example, major agreements include the UN Code of Conduct
502 for Responsible Fisheries and the UN International Plan of Action for the Management of Fishing Capacity.
503 Key treaties include the UN Convention on the Law of the Sea and UN Agreement on Straddling and Highly
504 Migratory Fish Stocks, and many activities are also carried out through regional treaties, and governmental and
505 intergovernmental organisations that have developed extensive knowledge around the types of intervention that
506 are needed to establish sustainable fisheries. It is, however, clear that regulation and governance alone cannot
507 solve the global issue of fisheries sustainability (McClurg, 2014). The transition to sustainable fisheries will not
508 only prevent the further deterioration of fish stocks, but it can also help global fisheries reset to a higher, more
509 productive and more profitable level. Research indicates that the global harvest from wild-caught fish could
510 be up to 40% higher and that global fish abundance could increase by 50% if sustainable management were
511 introduced and marine capture fisheries were allowed to recover (Costello et al., 2012). According to The World
512 Bank (2010), global fisheries could be worth an additional US\$50 billion annually. In other words, the upside
513 benefit of sustainable fisheries is huge and should be considered a 'no-regrets option.' Clearly, this a justification
514 for sustained investments in the sector.

515 **36 xvii. Fish Production in Nigeria**

516 Nigerians are large consumers of fish and it remains one of the main products consumed in terms of animal protein.
517 Investors have the opportunity to establish fish farming businesses in several locations across the country. Only
518 around 50% of the demand for fish is currently being met by local supply. The fisheries sector is estimated
519 to contribute 3.5% of Nigeria's GDP and provides direct and indirect employment to over six million people
520 (Adeola 2006). Nigeria has many rivers and water bodies which would serve as good locations to set-up fish
521 farms. Opportunities exist in various areas of the fishing sub-sector, these include the production of stable fish,
522 construction of fish farms, storage, processing and preservation of captured fish, fish seed multiplication, transport,
523 and financing. It was stated that early fish farmers in Nigeria raised their fish in burrow pits, abandoned minefields
524 and in earthen ponds on an extensive production system (Oresegun et al 2007). The introduction of concrete
525 tanks allows for manageable pond size and modification of the environment through a water flow-through system
526 and supplementary feeding thus allowing for higher fish yield. The advent of the indoor water re-circulatory
527 system (WRS) has ushered in a new prospect for aquaculture. The introduction of WRS has created a turning
528 point in the production of fish in Nigeria especially catfish.

529 A recirculatory system (RAS) is an intensive fish farming system that incorporates the treatment and reuse
530 of water with less than 10% of the total volume of water replaced per day. As a result, less water is needed
531 for the aquaculture operation system. There is also complete environmental control of the system and allyear
532 availability of controlled harvested fish. The basic concept of RAS is to reuse a volume of water through continual
533 treatment and delivery to the organisms being cultured. Although the re-circulatory system requires high initial
534 investment, high risk and compels technical skills, its offers a number of potential advantages for aquaculture
535 including: Production of fish in locations where limited water is available, Bio-security, Ability to locate the
536 operation close to markets to reduce product transport time and costs, Improved feed conversion, and Year-
537 round production. Ponds are essential components of most fish and aquaculture farms. Lowlands or valleys
538 less suited to other agricultural development are usually selected as sites for these ponds and this is often the
539 decisive consideration in selecting the site for the entire project. The ponds are normally shallow, cover relatively
540 large areas and are surrounded or impounded in the majority of cases by low earth dykes or dams. The ponds
541 are usually filled and drained through open canals; other methods, such as filling through a pipeline, being
542 exceptional.

543 **37 xviii. Cooperative and Fishery Cooperative**

544 Working alone or in isolation can be dangerous and disadvantageous as one may not be able to observe the whole
545 area but working with someone both can share the responsibility to observe different areas; thus, giving more
546 advantages. The need to work together cannot be overemphasized; this has been a component of man from
547 time immemorial as man is a social being; as he likes to associate, share views, ideas, and resources in a form
548 of cooperation. One single individual cannot have all the resources needed to complete a process as well as the
549 challenges confronting one cannot be solved alone but when there is cooperation among individual' limitations
550 can be overcome that is sharing resources with another, in way of ideas, money, material can be very supportive
551 and strengthens your limitation; this is the brain behind cooperative society.

552 The prevailing challenges in marine fish capture which include the changing environment, fishing habit, fish
553 breeding pattern and their movement as well as inability to raise fund to acquire fishing gear and the destruction
554 of fishing gear on the sea by sea truck; it has become necessary to pull resources together to confront these
555 challenges. Consequently, the prevailing reduction of individual fish capture in the riverine community had
556 put them under pressure in their fishing exploited, especially due to low income, low yield, and shrinkage of

557 agricultural labour (Franklin et al, 2014). According to them, these difficulties can be addressed by the collective
558 effort of farmers coming together and pool resources to achieve the common goal of productivity.

559 Co-operative societies had touched the lives of local farmers and fishermen alike. As they had support by
560 contributing resources in acquiring gears, marketing, raise money for a project and reach out to support groups
561 like government and non-profit organisations on behalf of their members. They also confront issues of an accident
562 on the sea especially as boats do hit down their canoe and destroy their gears. Also, they encourage group fishing
563 as they can corroborate to apprehend people confronting them while discouraging the bad practice and apart
564 from satisfying members' needs, co-operative members share risk and profit ??Igben&Eyo, 2002). This is the
565 idea that led the founding father of co-operative to activate the need to work in cooperative association to relieve
566 individuals of their challenges and oppression. Since then co-operative societies have continued to touch lives by
567 eliminating and reducing the suffering of people as well as bad practices.

568 **38 xviii. Constraints to fishery**

569 Sustainability of smallholder fishery in Nigeria appears to be threatened by both macro and micro-level
570 constraints. Macro-level constraints include degradation of the natural base stimulated by heavy dependence
571 on natural resources by the majority of the population in the country, as well as other natural and economic
572 environmental factors such as climate change. However, there are also constraints of a micro-level nature that
573 smallholder farmers continue to face. These include limited access to credit and information; unavailability and
574 poor access to fishing inputs and fishing gears.

575 Lassen (1998) has reported that fisheries in Africa and Nigeria, in particular, are constrained by the processes
576 in each subsystem of biological or economic constraints' while other constraints related to the social structure of
577 the fishing sector and others again are defined politically.

578 These latter constraints are often specific to the fishery.

579 Examples of constraints and their interdependence are (Lassen, 1998 Social structures: The type of fishery
580 possible is related to the fishing communities in the region. If there is a surplus of fishing possibilities, there may
581 be distant water fleets operating in the fishery.

582 The social structure depends on the economy of the fisheries but also on the technology available, e.g. the
583 maximum duration the vessels can operate. a. Technological subsystem: Technical interactions between the
584 catch of the different species depends both on the technology (selective vs unselective gears) and on how fish
585 are mixed in the sea (biological subsystem). The available technology may leave certain species uneconomical to
586 exploit, e.g. widely dispersed small pelagic like myctophids.

587 The constraints have in many instances been defined as limitations given by the subsystem. This has been
588 very clear for the biological subsystem, where the attitudes largely have been to allow status quo fishing as long
589 as there were no signs of recruitment failure. The basic attitude in the "precautionary approach" is to more
590 actively ascertain that exploitation is kept within certain limits, such limits being defined as to avoid recruitment
591 failure at least recruitment failures, caused by too low Spawning Stock Biomass. Strictly speaking, this is not
592 the biological constraint but the limit is below the biological constraint (where the stock fails to reproduce) and
593 the level is politically defined. Amire (2008) in his lead paper to a conference of the Fisheries Society of Nigeria
594 asserted that Nigerian marine fishing industry has faced great challenges including rising operational cost due
595 to the prohibitive price of Automotive Gas Oil (AGO), and the high incidence of sea armed robbery and pirate
596 attacks on fishing vessels. In the year 2004, there were also pirate attacks on fishing vessels; in 2005, 34 nos.
597 cases were reported; in 2006, 53 cases were reported; while in 2007, 107 nos. cases were reported. So far, in 2008
598 no cases have been reported. The level of sophistication of the attacks on fishing vessels at fishing grounds is
599 getting higher leading to loss of lives, communication equipment, fish and shrimp products, etc. The losses are
600 not easily quantifiable. Most of the attacks take place at the eastern sea-board of the Nigerian coastline.

601 Indeed, the challenge of piracy in the marine sector of the Nigerian fishing industry is a key hindrance to
602 the viability of investments. In the past months, there have been confirmed reports of attacks by pirates on
603 fishing and shrimping vessels at fishing grounds. Lives and properties have been lost thus creating fears and
604 apprehension amongst fishing vessel operators. There are reported cases of pirates hijacking fishing vessels and
605 using them to attack oil tankers and merchant's vessels. This is very disturbing and a great threat to the growth
606 of the Nigerian marine fishing industry. In fact, the level of new investments in the industry is dwindling. Unless
607 urgent steps are taken by the Federal Government of Nigeria and other stakeholders to address the issue, the
608 industry may collapse thereby leading to food insecurity, unemployment, loss of livelihoods, deeper poverty, and
609 greater restiveness in the coastal communities including the Niger Delta.

610 **39 b) Empirical Review**

611 A number of studies have been reported on fish production in Nigeria and around the world. Elhendy and Alzoom
612 (2001) assessed the cost of tilapia farming in the central region of Saudi Arabia. The study showed that the
613 minimum average cost of production occurs for 201 tons of tilapia per year per farm and profit is maximized for
614 a production of 300 tons annually per farm. All farms operate at less than a profit-maximizing scale and most
615 operate at less than a minimum efficient scale.

616 Also, Yesuf, Ashiru, and Adewuyi (2002) assessed the economics of fish farming in Ibadan Metropolis, Nigeria.
617 The study revealed that most farmers with secondary education and above operate at a small-scale level with
618 an average of three (3) ponds. Fish farmers practised polyculture fish farming. *Clariasspp* is the most raised
619 fish species followed by *Heteroclariasspp*. The gross margin analysis revealed that medium-scale farmers derived
620 the highest return of N1.55 for every one naira expended. This is followed by large-scale farmers at N1.52 for
621 every one Naira compared with only N1.34 for every 1Naira spent by small-scale farmers. On a productive level,
622 Ajao (2006), found that 80% of fish farmers in Oyo State, Nigeria, operated less than two (2) ha which could
623 not capture the economy of size. More than 90% of the respondents distributed their fish at the site while 60%
624 had little access to extension agents. Meanwhile, fish farming was found to be profitable. Gill, Mcconney, and
625 Mahon (2007) conducted a study on the socio-economic profile of fishers in the Grenadine Islands. The study
626 utilized survey design, and data was gathered through extensive interviews at all of the major fishing villages
627 in the Grenadines. During this stage, 267 fishers were interviewed. Over 75% of the fishers interviewed in the
628 study rely on fishing as their major income source and less than half have an alternative livelihood. The findings
629 showed that handling for demersal is by far the most widely practised fishing technique in the Grenadines. Again,
630 the most common boat type is the small wooden bow and stern. Boats are not specific and are used in many
631 types of fishery in the area. It was also revealed that due to lack of a reliable source of income, many continue to
632 fish well beyond retirement age. This suggests a possible vulnerability within the fishing community, especially
633 within the older population.

634 Kudi, Bako, and Atala (2008) examined the resources, cost and returns and other factors affecting fish
635 production in Kaduna State, Nigeria. The study revealed that land, water, labour, and capital were the main
636 resources employed in fish production. The costs and returns analysis indicated that variable cost constituted
637 97.63% of the total cost of fish production in the study area, while the fixed cost constituted 2.37%. Amongst the
638 variable inputs, fingerlings/juveniles (42.82%) and feed (34.70%) constituted the highest (77.52%) to the cost of
639 production, while hired labour constitutes 16.91%. The cost of production was N571, 231.79, the total revenue
640 of N5, 853, 625.64 and the net income was N5, 282, 393.85 indicating that fish production was highly profitable.

641 El-Naggar, Nasr-Alla, and Kareem (2008) examined the economics of fish farming in Behera Governorate of
642 Egypt. They found out that, high prices of fish feed; declining fish prices and lack of finance were the top-ranking
643 serious constraints facing fish farmers in that area. Feed costs per kg of fish were LE 3.87, representing 58.9% of
644 the production costs. The break-even analysis showed that average production costs of LE 6.57 per kilogram of
645 fish while the sales price is LE 7.5 /kg. The findings also reveal that the quantity of fish seeds is a notable and
646 significant factor contributing to the fish farming enterprise in the study area. That is, combining rice and fish
647 farming is complimentary.

648 Raufu, Adepoju, Salau, and Adebiyi (2009) adopted of simple random sampling in selecting the respondents
649 to examine the determinant of yield performance in small scale fish farming. A structural interview schedule
650 was used to obtain information from eighty (80) respondents. Descriptive analysis was used to analyse the socio-
651 economic characteristics, while budgetary analysis was used to determine the profitability, and multiple regression
652 analysis was the inferential statistic used. The result showed that about 70.0 percent of the fish farmers produce
653 above 5000 kilograms per year, while a mean of 5150.75 kilograms per year was obtained. The budgetary analysis
654 revealed that the average total cost of production per annum was N3, 694, 586. 00 while the total revenue was
655 N12, 680, 490. 00; which gives a net farm income of N8, 985, 904. 00per annum. The profitability ratio gives
656 a benefit-cost ratio of 3.43, and a gross margin ratio of 1.41. This indicates the profitability of small-scale fish
657 farming in the study area. The significant variables of sex and age are positively related to output resulting in
658 more than a tone and 13 tonnes increase respectively in output difference in male to female fish farm and an older
659 fish farmer's pond while educational level of the respondents, family and hired labour were negatively related to
660 output, each resulting in not less than 2 tonnes decrease in output with their unit increase. The study, therefore,
661 recommends, among others, that seminars and training should be held at intervals so as to update small scale
662 fish farmers' knowledge on fish farming procedures and practices.

663 Nieves, Pelea, Bradecina, Pereyra, Morooka, Shinbo and Rivero (2009) conducted a study that was designed
664 to evaluate the socio-economic conditions, the status of the fisheries and adaptive capacities of households and
665 communities in the Kuroshio province of Philippines. The study was carried out in 2007. The random sampling
666 technique was used to draw 1,035 fishing household respondents in San Miguel Island, Philippines. Participatory
667 resource assessment (PRA) methods and multi-stakeholder processes (MSP) tools were used in data collection
668 from a cross-section of all sectors in the community. Key findings showed that the island economy depends
669 largely on agriculture (44%) and fisheries (28%). Forty-six percent (46%) of the population are actively earning
670 while about 68% of wives are unemployed, some 17% are earning an average of Php. 6,200 per annum from mat
671 making. The per capita income distribution corresponds to 79% poverty incidence with 66% of the surveyed
672 population falling below the food threshold. Using the international standard of a dollar a day per capita, 86% of
673 the population earns less than a dollar a day. The mean household size is 5.7 with a relatively higher dependency
674 ratio of 60% and the majority of the population has only reached an elementary level of education. Again,
675 about 84% fishers are fulltime, 57% own boats that are either motorized (43%) or nonmotorized (57%) and
676 the remaining 43% are renter-borrowers. Fishing is affected by southwest (November to March) and northeast
677 monsoons (June to October) and is generally good from April to May. Fishing is characterized by low catch per
678 unit effort.

679 Adewuyi, Ayinde, and Akerele (2010) analysed the profitability of fish farming in Ogun State Nigeria. The
680 study made use of both primary and secondary data. The main instrument for collecting the primary data was
681 structured questionnaire. The descriptive analysis showed that a large proportion (68%) of the fish farmer had
682 formal (tertiary) education and financed their fish production through personal savings. Equally evident from
683 the result is that an average total cost of N394, 380 was incurred per annum by fish farmers while gross revenue
684 of N715030.30 was realized with a gross margin of N574314 and a profit of N320650. The rate of return on
685 investment of 0.55 implies that for every one naira invested in Fish production by farmers, a return of N1.55
686 and a profit of N0.55 were obtained. The multiple regression results revealed that fish output was significantly
687 determined by pond size, labour used, cost of feeds, cost of lime and cost of fingerlings. The coefficient of
688 determination, R² value of 0.462 indicates that 46.2% of the variation in the value of fish output was explained
689 by pond size, quantity of labour used, cost of feed, cost of lime and cost of fingerlings The degree of responsiveness
690 of the value of fish output to changes in the independent variables shows that a percent increase in the values of
691 pond size, labour, feeds, fertilizer, lime, fixed input, and fingerlings will lead to 0.029%, 0.057%, 0.005%, 0.534%,
692 0.007%, 0.79% and 0.001% in the value of fish produced respectively. The study concluded that fish production
693 in the study area is economically rewarding and profitable. It is capable of creating employment, augmenting
694 income and improving the standard of living of the people. Therefore, it recommended government participation
695 in fish farming to boost the quantity of fish available for consumption.

696 Awoyemi and Ajiboye (2011) investigated the profitability of fish farming among women in Osun State. A
697 simple random sampling technique was employed to selecting 62 farmers from the sampling frame obtained from
698 the list of Agricultural Development Programme (ADP) contact farmers in four Local Governments Areas (LGAs)
699 of Egbedore, Olorunda, Ede South and Ife Central, which made up the study area. The main instrument for
700 collecting the primary data was structured questionnaire. It is evident from the result that an average total
701 cost of N371486.35 was incurred per annum by fish farmers while gross revenue of N791242.52 was realized with
702 a gross margin of N574314 and a profit of N419756.17. The rate of return on investment of 0.58 implies that
703 for every one naira invested in Fish production by farmers, a return of N1.5 and a profit of 58k were obtained.
704 The multiple regression results revealed that fish output was significantly determined by pond size, labour used,
705 cost of feeds, cost of lime and cost of fingerlings. The study concluded that fish production in the study area is
706 economically rewarding and profitable.

707 Also, Kassli, Baruwa, and Mariama (2011) analysed the economics of inland fishing, aquaculture and fish
708 marketing in Niamey and Tillabery areas of Niger Republic. The study showed that both the aquaculture and
709 inland fish production was profitable with a rate of return of 61% and 320% respectively while two types of fish
710 marketing channels were identified.

711 Adewumi, Ayinde, Adenuga, and Zacchaeus (2012) investigated the profitability of artisanal fishing in river
712 Asa in Asa Local Government Area of Kwara State, Nigeria. A total of 80 respondents were randomly selected
713 for the study. Data were collected by the use of a structured set of questionnaires. Three research questions
714 guided the study. Results of profitability analysis showed that an average fisherman makes a Gross Margin
715 of ?52883.99/fisherman/month. The problems of artisanal fishing included lack of storage facilities, lack of
716 government support and seasonal change in the volume of the river. The study recommends among others;
717 fishermen should be given adequate training and the required assistance on modern fishing techniques and the
718 use of modern fishing equipment to ensure sustainability. There is also the need to organize the farmers into
719 cooperatives to enable them to have better access to government programmes and credits. It is also recommended
720 that the government should build mini cold rooms with good storage facilities to help the fishermen overcome
721 the problem of fish spoilage which reduces the quality of their products.

722 Adeogun, Alimi, and Adeyemo (2012) summarized the aquaculture practices in Nigeria and compares
723 productivity, costs, and benefits across various types of enterprises. The study was based on a field survey
724 conducted between 2008 and 2009, with data drawn from 700 fish farmers. More than half (58.3 %) of the fish
725 farmers raised fish in concrete tanks. Monoculture of Clarias species was the most dominant culture practice
726 by 75.0% of fish farmers in the study area. Economic analysis of the production systems using various farming
727 enterprises revealed that the profit margin was found to be as low as N207.92 per kilogram of fish inflow techniques
728 to N314.00 per kilogram in the stagnant system. The mean overall profitability was 4.7. The F-value (6.08)
729 showed a significant difference in the profitability ratio of different fish farming enterprises. This shows that fish
730 farming in Lagos State achieved on the average some levels of profitability that should guarantee its economic
731 sustainability.

732 Aheto, Asare, Quaynor, Tenkorang, Asare, and Okyere (2012) carried out a study that tried to assess the
733 sustainable fishing livelihoods in coastal communities of Ghana. The study gathered data through interviews
734 that were conducted among 60 fishermen between February and March 2010. Economic assessment of small-scale
735 fishing activities was done using questionnaires based on direct market pricing and contingent valuation methods.
736 The results indicate that highly profitable fish species include Epinephelus aeneus, Sparus caeruleostictus, Dentex
737 angolensis and Lutjanus goreensis valued at US\$2.97, US\$2.87, US\$2.85 and US\$2.63 per kilogram respectively.
738 The less profitable species include Dasyatis margarita, Caranx crysos and Sardinella aurita valued at US\$0.34,
739 US\$0.66 and US\$ 0.85 per kilogram respectively. Although Sardinella aurita was among the less valuable fish
740 species, it was the main species driving profits for the fishermen due to its high share volume among the fish
741 catches. Findings from this study suggest high rates of exploitation, in that stocks generally cannot provide for

742 increased economic return in the face of increased investment. This is a clear indicator that the open-access
743 nature of Ghanaian fisheries is not sustainable, and management reform is well overdue.

744 Olaoye, Ashley-Dejo, Fakoya, Ikeweinwe, Algbeye, Ashaolu and Adelaja (2013) assessed the socio-economic
745 analysis of fish farming in Oyo State, Nigeria. A multistage random sampling technique was used to select 222
746 fish farmers from all the four agricultural zones in the state. Data collected were analysed using descriptive
747 statistics, budgetary analysis, and profitability ratios. The study revealed that the mean age, household size,
748 and fish farming experience were 46 years, 6 persons per household and 9.3 years respectively. The result of the
749 budgetary analysis shows that the average total cost (TC) of N2,883, 515.08 was incurred, total revenue (TR) of
750 N4,873,521.29 was realized and a returning gross margin (GM) of N2,376,616.36. The profitability ratio gave a
751 benefit-cost ratio of 1.69, rate of return of 0.69 gross revenue ratios (GRR) of 0.59 and expense structure ratio
752 (ESR) of 0.15. This is an indication that fish farming is profitable in the study area. Constraints perceived by
753 most of the farmers include the high cost of fish feed and market price fluctuation. The significant level of profit
754 obtained from the study is evidence that it has the potential in alleviating household poverty in the country thus;
755 government should provide credit facilities with the small interest rate to fish farmers.

756 Nandu, Gunn, Adegbeye, and Mongalaku (2014) conducted a study on the assessment of fish farmers'
757 livelihood and poverty status in Delta state. Their findings suggest that the livelihood status of the farmers has
758 improved in terms of socio-economic conditions, quality of food consumed, housing condition and savings among
759 others, yet, the farmers are relatively poor. The positive social and environmental attributes of aquaculture
760 make it an attractive entry point to improve the livelihoods and exterminate poverty among the poor rural
761 fishing households. Adequate fishing can ease under-nutrition, improve income status and serve as a means
762 of agricultural diversification to alleviate poverty and ameliorate standard of living. Even though the study
763 found that improvement in the livelihood status of fishing households was recorded, their livelihood status is still
764 below the annual minimum income of an average Nigerian, with a high poverty gap. It is adjudged that the
765 poverty alleviation programmes targeting fish farmers have not impacted positively on the livelihood status of
766 fish farmers. With the high level of petroleum exploration in the State, the government and other organizations
767 have not provided many basic facilities to enhance livelihood status and expunge poverty in the area.

768 Iheke and Nwagbara (2014) analysed the profitability and viability of catfish farming in the Abia state of
769 Nigeria. The study used a structured questionnaire and personal interview methods to collect data from a
770 sample of 50 catfish farmers. The data were analysed using net profit analysis and benefit-cost ratio (BCR).
771 The results show that on the average, an initial capital of N779, 200 was used in setting up each of the catfish
772 business and the average farm size is 0.25 ha. An average annual gross revenue of N1, 325,000 and an average
773 annual profit of N545, 800 accrued to the catfish farmers, indicating that catfish farming is a profitable business
774 in the area. The study further shows that catfish farms are viable enterprises in the area given the BCR of 1.33.

775 Issa, Abdulazeez, Kezi, Dare and Umar (2014) analysed the profitability of small-scale catfish farming in
776 Kaduna State, Nigeria. Sixty respondents were randomly selected and interviewed using an interview schedule to
777 elicit information through a multistage sampling technique. The data were analysed using frequency percentages,
778 mean and ranking while budgetary analysis (gross margin) was used to determine the profitability of catfish
779 farming. The result shows that the majority (70%) used the concrete pond of an average of 200m². The
780 source of their capital was mainly from personal savings (48.3%). The number of fingerlings raised ranges from
781 500 -6000 at 20 fingerlings/m². The majority (55%) of the, raised between 3000 and 6000 fish per cycle at 6
782 to 8 tons/ha year. Quantity of fish raised and consumed had contributed positively to respondents' household
783 income. However, savings from catfish farming has contributed about 20 to over 75% of the total income of
784 the respondents. The result of profitability reveals that respondents had an average of about ?774,223.05 and a
785 net gross percentage of 73.4% per production cycle. Inadequate capital, scarcity of fingerlings, and inadequate
786 extension services were the major problems facing catfish farmers. The study recommended that catfish farmers
787 should be encouraged to form and manage functional cooperatives as a way to pool their resources for individual
788 development within the fish farming industry.

789 Okpeke and Akarue (2015) assessed the profitability of fish farming in the Warri South Local Government
790 Area of Delta State, Nigeria. A purposively sampling technique was used to select fifty (50) fish farmers from the
791 study area. Data collected were analysed using descriptive statistics-frequency, percentages, while budgetary and
792 gross margin was used to determine Farm Net Income (FNI). The study indicated that variable cost accounted
793 for (72.95%) of the total cost while the fixed cost of production accounted for 27.05%. The result shows that a
794 total cost (TC) of N592, 316 was incurred by a respondent per farming season while total revenue (TR) of N976,
795 622 was realized with a returning gross margin (GM) of N544, 528 and a net farm income (NFI) of N384, 306
796 per farmer per annum, thus indicating that fish farming is profitable in the study area. Constraints encountered
797 by the farmers include insufficient funds, high cost of feed, lack of processing/preservation/storage facilities and
798 market price fluctuation. The study recommended that government and other stakeholders should help provide
799 cheap sources fish feed, while also making funds available amongst others.

800 Tunde, Kuton, Oladipo, and Olasunkanmi (2015) examined the economic analysis of fish farming in the Saki-
801 East Local Government Area (LGA) of Oyo State, Nigeria. A structured questionnaire was administered to
802 randomly selected respondents to represent the fish farming community in the study area. Data collected were
803 analysed using descriptive statistics, costs and budgetary analysis and multiple regression analysis. The results of
804 a Cost and Return Analysis of the fish farming in the study area showed that the total revenues were N244364.30

805 per cycle, whereas the total cost was N129379.52 per cycle. This implies that fish farming was profitable and is
806 expected to continue to operate. In addition, Benefit-Cost Ratio (BCR) was 1.9, the fish farming is therefore
807 considered to be profitable. The rate of Return on Investment was 0.8887, meaning, for every N1 invested; there
808 will be a return of 88.8.

809 Yisa, Adebayo, Mohammed and Anaweta (2015) conducted a study in the Suleja Local Government Area
810 of Niger State to assess the profitability of catfish production. Forty (40) catfish farmers were selected from
811 the study area using simple random sampling techniques. A structured questionnaire was used to collect data
812 from the respondents. The analytical tools used include descriptive statistics, net farm income analysis, and
813 profitability ratios and multiple regression functions. The result of the analysis showed that the average total
814 cost per kilogram of fish was N321.23k and the average total revenue per kg of fish was N501.31. This gives a
815 net farm income of N180.08k per kilogram of fish farming. The study also showed that the sum total of elasticity
816 of variables was less than one (0.994), this indicates that catfish farming in the study area is in stage II, which
817 is the rational stage of production. Double-log functional model was chosen as the lead equation. The value of
818 R² was 0.998. The number of ponds (X₁) and the number of fingerlings (X₃) was significant at 1%, while
819 labour(X₅) was significant at 5% levels of significance. The F-ratio of 2964.370 was significant at P (< 0.01).
820 The study noted that the major problems faced by catfish farmers include; water, high cost of feed and capital.

821 Omobepade, Adebayo, Amos, and Adedokun (2015) utilized primary data collected from 80 respondents
822 selected via a multistage sampling procedure to analyse the cost and return of aquaculture production in Ekiti
823 State, Nigeria. A predictive multiple regression model was estimated to determine the influence of the cost of
824 inputs on the farmer's revenue. Profitability parameters such as Gross margin, Benefit-Cost Ratio (BCR), Return
825 on Investment (ROI) and Percentage Profitability (PP) were used to estimate the profitability of aquaculture.
826 The result revealed personal savings (42.50%) as the major source of working capital and about 91.60 % of the
827 production cost is incurred on feed, fingerlings, and labour. Also, about 69% of the variation in net revenue in
828 aquaculture production was accounted for by the costs of water, feed, fuel, labour, fingerlings, and other costs.
829 The values of the Gross Margin (N390, 942.80), Benefit-Cost Ratio (1.74), Return on Investment (0.74) and
830 Percentage Profitability (74.38) indicated that aquaculture is profitable in the study area. The result further
831 revealed that 40.00 % of the respondents made a profit within the range of N201,000 to N300,000. Based on the
832 findings, it is recommended that aqua culturists should learn how to formulate quality feeds from locally available
833 ingredients to complement their usual supply. Aqua culturists should also endeavour to organize themselves into
834 cooperatives to facilitate their access to credit facilities. Public awareness is needed to further arouse the interest
835 of individuals, especially youth to consider fish farming as a wealth creation venture in the state.

836 Dambatta, Sogbesan, Tafida, Haruna & Fagge (2016) conducted research that assessed the profitability and
837 constraints of fishermen in three selected zones of Kano State in accordance with the existing Agricultural
838 Development programme (ADPs) Zones. Purposive sampling technique was used for sampling the respondents
839 in the study area. Primary data were collected from 30 fishermen, 30 processors and 20 consumers using
840 questionnaires and analysed statistically. The result of the study showed that male-dominated fishing (52.3%),
841 while female processing (47.5%). The gross margin analysis showed profitability values of N74,350 for fishermen
842 during the raining period. The study also revealed that both male and female were involved in all activities of
843 fishing such as fishing, processing, marketing and consumption with the male having the majority (52.5%), while
844 female constitute (47.5%) of the respondents; although female participate in processing and marketing than other
845 activities.

846 Setsoafia, Owusu, and Danso-Abbeam (2017) evaluated the profit efficiency of artisanal fishing in the Pru
847 District of Ghana by explicitly computing profit efficiency levels, identifying the sources of profit inefficiency, and
848 examining the constraints of artisanal fisheries. Cross-sectional data were obtained from 120 small-scale fishing
849 households using a semi-structured questionnaire. The stochastic profit frontier model was used to compute the
850 profit efficiency level and identify the determinants of profit inefficiency while the Garrett ranking technique was
851 used to rank the constraints. The average profit efficiency level was 81.66% which implies that about 82% of the
852 prospective maximum profit was gained due to production efficiency. That is, only 18% of the potential profit
853 was lost due to the fishers' inefficiency. Also, the age of the household head and household size increase the
854 inefficiency level while experience in artisanal fishing tends to decrease the inefficiency level. From the Garrett
855 ranking, access to credit facility to fully operate the small-scale fishing business was ranked as the most pressing
856 issue followed by unstable prices while perishability was ranked last among the constraints. The study, therefore,
857 recommends that group formation should be encouraged to enable easy access to loans and contract sales to boost
858 profitability.

859 Agu-Aguiyi, Onyia, Umebali, and Sotonye (2018) appraised the performance of fishery cooperative societies in
860 Rivers State. Data were obtained from 360 cooperative fishermen, from 12 purposively selected Local Government
861 Area of Rivers State. Data obtained were analysed with both descriptive and inferential statistics. The findings
862 revealed that the respondents were of low educational qualification as such affected their initiative to improve
863 the technique in the fish production as well as management of the fishing experience, had a significant influence
864 on the fishermen's return as fishermen who went for more catch. Also, the findings from the study gave evidence
865 that; there are three major sources used in the fishing exploit namely: deep-sea approach, the riverside, and the
866 creek. The study showed that more fishermen prefer the creek as fishes tend to hide at the creek followed by
867 the riverside approach with few exploiting the deep sea. The study added that fishermen are faced with various

868 degrees of challenges which range from pollution, climate change/bad weather, financial challenge; storage and
869 processing facility; as well as the high cost of fishing tools.

870 Busari (2018) carried out an economic analysis of homestead aquaculture in Olorunda local government area,
871 Osun State, Nigeria. A multistage sampling procedure using a random sampling technique was used to select
872 one hundred and twenty (120) aquaculture farmers as a representative sample for the study. Data were collected
873 through a personal interview with the aid of a structured interview schedule. The results of descriptive analysis
874 showed that the aquaculture farmers were middle-aged, smallholder catfish farmers, married males, with tertiary
875 education. The indicators used to measure the economic performance were gross margin (GM) net farm income
876 (NFI), rate of return on investment (RRI) and operating profit margin ratio (OPMR). The result revealed
877 that GM and NFI were ?475342.51 and ?468451.18 respectively. The rate of return on investment was 71.02%
878 showing that homestead fish farming is a profitable venture in the study area. Results of regression analysis
879 showed that the cost of fingerlings and pond maintenance were significant determinants of gross margin from
880 homestead aquaculture production in the study area. The study concluded that although homestead aquaculture
881 is a profitable venture in the study area, there is still the need for the farmers to increase their scale of production
882 in order to maximize their gross margin.

883 Iruo, Onyeneneke, Eze, Uwadoka and Igberi (2018) used farm and household level data gathered from 360
884 randomly selected smallholder fish producers to analyse the economics of smallholder fish farming as relates
885 to poverty reduction in the Niger Delta area. Using enterprise budgeting, Foster-Greer-Thorbecke and Tobit
886 regression models, the study found that fish farming in the region is profitable and the depth of poverty on
887 fish farming households is high. The effects of socioeconomic variables, farm size, and assets on poverty were
888 generally negative, indicating several interactions between poverty and the variables analysed. Fish production
889 significantly reduced poverty in the region. They found out that, high prices of fish feed; declining fish prices
890 and lack of finance were the top-ranking serious constraints facing fish farmers in that area. The break-even
891 analysis showed that average production costs of LE 6.57 per kilogram of fish while the sales price is LE 7.5 /kg.
892 The findings also reveal that the quantity of fish seeds is a notable and significant factor contributing to the fish
893 farming enterprise in the study area. That is, combining rice and fish farming is complimentary. Raufu, et al.

894 **(2009**

895 To examine the determinant of yield performance in small scale fish farming.

896 40 Survey Design/Interview Descriptive Method/ Multiple 897 Regression

898 The result showed that about 70.0 percent of the fish farmers produce above 5000 kilograms per year, while a
899 mean of 5150.75 kilograms per year was obtained. The budgetary analysis revealed that the average total cost
900 of production per annum was N3,694,586.00 while the total revenue was N12,680,490.00; which gives a net farm
901 income of N8,985,904.00 per annum. The profitability ratio gives a benefit-cost ratio of 3.43, and a gross margin
902 ratio of 1.41. This indicates the profitability of small-scale fish farming in the study area. The significant variables
903 of sex and age are positively related to output resulting in more than a tone and 13 tonnes increase respectively
904 in output difference in male to female fish farm and an older fish farmer's pond while educational level of the
905 respondents, family and hired labour were negatively related to output, each resulting in not less than 2 tonnes
906 decrease in output with their unit increase. The descriptive analysis showed that a large proportion (68%) of the
907 fish farmer had formal (tertiary) education and financed their fish production through personal savings.

908 Equally evident from the result is that an average total cost of N394,380 was incurred per annum by fish farmers
909 while gross revenue of N715030. 30 The study showed that both the aquaculture and inland fish production was
910 profitable with a rate of return of 61% and 320% respectively while two types of fish marketing channels were
911 identified. The results show that on the average, an initial capital of N779,200 was used in setting up each of
912 the catfish business and the average farm size is 0.25ha. An average annual gross revenue of N1,325,000 and an
913 average annual profit of N545,800 accrued to the catfish farmers, indicating that catfish farming is a profitable
914 business in the area.

915 The study further shows that catfish farms are viable enterprises in the area given the BCR of 1.33. Issa, et
916 al.

917 **(2014**

918 To analyse the profitability of small-scale catfish farming in Kaduna State, Nigeria.

919 41 Survey/Interview Descriptive Method/BCR Analysis

920 The result shows that the majority (70%) used the concrete pond of an average of 200m The result of the analysis
921 showed that the average total cost per kilogram of fish was N321.23k and the average total revenue per kg of fish
922 was N501.31. This gives a net farm income of N180.08k per kilogram of fish farming. The study also showed
923 that the sum total of elasticity of variables was less than one (0.994), this indicates that catfish farming in the
924 study area is in stage II, which is the rational stage of production. Doublelog functional model was chosen as
925 the lead equation. The value of R² was 0.998. The number of ponds (X₁) and the number of fingerlings (X₃)
926 was significant at 1%, while labour(X₅) was significant at 5% levels of significance. The F-ratio of 2964.370
927 was significant at P (< 0.01). The result of the study showed that male-dominated fishing (52.3%), while female

928 processing (47.5%). The gross margin analysis showed profitability values of N74,350 for fishermen during the
929 raining period. The study also revealed that both male and female were involved in all activities of fishing such as
930 fishing, processing, marketing and consumption with the male having the majority (52 Fish farming in the region
931 is profitable and the depth of poverty on fish farming households is high. The effects of socioeconomic variables,
932 farm size, and assets on poverty were generally negative, indicating several interactions between poverty and the
933 variables analysed. Fish production significantly reduced poverty in the region.

934 **42 Source: Researcher's Compilation c) Gap in the Literature**

935 Clearly, a modest number of research works exist in the literature, both conceptually and empirically. There
936 are studies on both pond fish production and activities of artisanal fishermen in different parts of the world and
937 Nigeria. There are also studies on the profitability of fishing and pond fish production in different parts of the
938 world. However, there is the paucity of studies that have focused on the economics of fish production and/or
939 profitability of fish production among cooperative societies Rivers State. Also, none of the studies reviewed
940 captured the effect of investment and revenues on profitability of fish production, as well as identify the various
941 constraints to fish production. This presents a gap in knowledge and therefore necessitates the need for the
942 present study.

943 **43 d) Theoretical Framework**

944 The present study will be anchored on the theory of collaboration. Collaboration is a promising mode of human
945 engagement but in order to become more than a passing fad, a theoretical structure and framework are needed to
946 guide individuals and groups toward successful collaboration (John-Steiner, 2002). Conceptually, collaboration
947 is a recursive process where two or more people or organizations work together in an intersection of common
948 goals -for example, an intellectual endeavour that is creative in nature -by sharing knowledge, learning and
949 building consensus. Most collaboration requires leadership, although the form of leadership can be social within
950 a decentralized and egalitarian group. In particular, teams that work collaboratively can obtain greater resources,
951 recognition, and reward when facing competition for finite resources. Collaboration is also present in opposing
952 goals exhibiting the notion of adversarial collaboration, though this is not a common case for using the term.

953 Collaboration has of recent assumed increasing attention following the advocacy by many for cooperative
954 engagements as a means of solving many global challenges including poverty eradication, growth promotion,
955 and job creation. The rationale behind the use of the theory of collaboration is basically to evaluate the credit
956 repayment behaviour of cooperative members. The theory will enhance our understanding and analysis of the
957 reason why farmers endeavour to repay the credits they sourced from their cooperatives. Indeed, members
958 understand that when they repay borrowed funds, it affords another member of the collaborative group to
959 have his own access to credit. A cooperative society as conventionally known is an autonomous association of
960 persons united voluntarily to meet their common economic, social and cultural needs and aspirations through a
961 jointly-owned and democratically-controlled enterprise (ICA, 1995). Thus, cooperative organizations, including
962 fish farmers' cooperatives have all the attributes of collaborative institutions. Therefore, our knowledge of
963 cooperatives would be enhanced when examined from the perspectives offered by the theory of collaboration.

964 The theory of collaboration can be used to predict and influence member behaviours, analyse member
965 perceptions of equity, provide an insight into reasons for the cooperative spirit and improve member participation
966 in the cooperative institution, and in particular on why credit productive usage and repayment are prioritized
967 by members.

968 **44 e) Other Relevant Theories of Profit**

969 i.

970 **45 The Frictional Theory of Profits**

971 This theory was propounded by Prof. G.J. Stigler, according to which, there exists a normal rate of profit which
972 is a return on capital that must be paid to the owners of capital as a reward for saving and investment of their
973 funds rather than to consume all their income or hoard them. In a static economy where no unanticipated
974 changes in demand or cost conditions occur, in long-run equilibrium the firms would be earning only normal rate
975 of profit on their capital and entrepreneurial talent.

976 Under these conditions economic profits would not accrue to the firms. Frictional theory of profit explains that
977 shocks or disturbances occasionally occur in an economy as a result of unanticipated changes in product demand
978 or cost conditions which cause disequilibrium conditions. It is these disequilibrium conditions that brings into
979 existence positive or negative economic profits for some firms. Thus, according to frictional theory, economic
980 profits exist for some time because of frictional factors which prevent an instantaneous adjustment of the system
981 to the new conditions. When economic profits are made in the short run, more firms will enter the industry in
982 the long run until all economic profits are driven down to zero (that is, firms will be making only normal return
983 or profits on their capital investment). On the other hand, when firms are making losses (i.e. negative profits),
984 some firms will leave the industry. This will cause price of the product to rise so that losses are eliminated and
985 the remaining firms make only normal profits.

986 **46 ii. Monopoly Theory of Profits**

987 This theory was propounded by Robinson, J., Chamberlin, E. H. and Kalecki, M. where they associated super-
988 normal profits with monopoly power enjoyed by some firms. According to this theory, firms with monopoly power
989 restrict output and charge higher prices than under perfect competition. This causes above-normal profits to
990 be earned by the monopolistic firms, because of strong barriers to the entry of new firms, monopoly firms can
991 continue to earn economic profits even in the long run. Monopoly power may arise due to sole control over some
992 essential raw material required for the production of a commodity, from economies of scale, from legal sanction
993 or from ownership patents, from Government restrictions on the import of a commodity.

994 **47 iii. Innovations Theory of Profits**

995 This theory was propounded by Joseph Schumpeter. The theory explains that economic profits arise because
996 of successful innovations introduced by the entrepreneurs. According to the theory, the main function of the
997 entrepreneur is to introduce innovations in the economy and profits are reward for his performing this function.
998 Innovation, as used by Schumpeter, has a very wide connotation. Any new measure or policy adopted by
999 an entrepreneur to reduce his cost of production or to increase the demand for his product is an innovation.
1000 Thus, innovations can be divided into two categories. First types of innovations are those which reduce cost of
1001 production. In this first type of innovations are included the introduction of a new machinery, new and cheaper
1002 technique or process of production, exploitation of a new source of raw materials, a new and better method of
1003 organising the firm, etc.

1004 Second types of innovations are those which increase the demand for the product. In this category are
1005 included the introduction of a new product, a new variety or design of the product, a new and superior method
1006 of advertisement, discovery of new markets etc. If an innovation proves successful, that is, if it achieves its aim of
1007 either reducing the cost of production or increasing the demand for a product, it will give rise to profits. Profits
1008 emerge because due to successful innovations either cost falls below the prevailing price of the product or the
1009 entrepreneur is able to sell more and at a better price than before. It is here worth mentioning that profits caused
1010 by a particular innovation tend to be competed away as others imitate and also adopt it. An innovation ceases
1011 to be new or novel, when others also come to know of it and adopt it. When an entrepreneur introduces a new
1012 innovation, he is first in a monopoly position because the new innovation is confined to him only, He therefore
1013 makes large profits. When after some time others also adopt it in order to get a share, profits will disappear.

1014 **48 III. Research methodology**

1015 This study is based on the survey and analysis of the profitability of fish production among members of cooperative
1016 societies in Rivers State, Nigeria. The chapter describes the design of the study, area of the study, population,
1017 sample size determination and sampling techniques, the research instrument, and method of data analysis.

1018 **49 a) Research Design**

1019 The study used a descriptive survey research design. The choice of this design is because it enables the gathering
1020 of data from a large number of respondents who constituted the sample which is representative of the population
1021 of interest. The generated data helped to understand better facts and events, give interpretation and explanation
1022 as well as make predictions about variables easy. Research design is the framework or plan that is used as a guide
1023 in collecting and analysing the data for the study (Baridam, 2001).

1024 **50 b) Area of the Study**

1025 The Rivers State currently consists of 23 Local Government Areas, all of which handle local administration under
1026 an elected Chairman. The state has maintained its importance as a leading supplier of wealth to the nation for
1027 centuries. In 2007 the State ranked 2nd nationwide with a Gross Domestic Product (GDP) of \$21.07 billion and
1028 per capita income of \$3.965m. Rivers is famous for its vast reserves of crude oil and natural gas. It was perhaps
1029 the richest and most important section of the African zone of the British Empire. Rivers State has two major oil
1030 refineries, two major seaports, airports, and various industrial estates spread across the land. More than 60% of
1031 the country's output of crude oil is produced in the State. Other natural resources found within its boundaries
1032 are silica sand, glass sand, and clay.

1033 Prior to the discovery of oil in commercial quantity in 1951, agriculture was the primary occupation of the good
1034 people of Rivers State. Around the 19th century when the industrial revolution reached its peak in England,
1035 the area was then referred to as Oil Rivers Protectorate. This was due to its abundant palm oil and kernel which
1036 basically constituted the main revenue source of the country. In a sample survey carried out by the Federal
1037 Ministry of Agriculture and Natural Resources, about 40% of the rural inhabitants were committed to farming
1038 in 1983. Rivers State is one of the leading states in the production of yam, cassava, cocoyam, maize, rice, and
1039 beans. About 39% (760,000 hectares) of the State's total landmass, particularly in the upland area is suitable
1040 for cultivation. Major cash crops produced are oil palm products, rubber, coconut, raffia palm, and jute. Other
1041 crops grown for food include vegetables, melon, pineapples, mango, pepper, banana, and plantain. The fishing
1042 industry is an important sector in Rivers State. Besides being lucrative, fishing is also a favourite activity of

1043 many. There are approximately 270 species of fish existing; with many artisanal fishermen in the riverine areas.
1044 The State provides valuable seafood such as crabs, oysters, shrimps, and sea snails, among others. Vertebrates
1045 like birds, mammals, and reptiles are also found in the region.

1046 **51 c) Population of the Study**

1047 The population of the study is 21,282 cooperative members from 206 registered cooperative societies in the state.
1048 This data was obtained from the Rivers State Ministry of Agriculture and the State's Department of Cooperative
1049 Societies ([RMASDCS], 2018).

1050 **52 d) Sample Size Determination and Sampling Procedure**

1051 The sample size of the study is 400 fishermen of cooperative societies. This was generated from the population
1052 using Taro Yamane (1967) formula, which is stated thus; You may note that each co-operative society has a
1053 minimum of fifteen (15) active members and five members are selected from each co-operative society.

1054 The study adopted multistage sampling techniques. Stage one involved the selection of 16 out of the 23
1055 LGAs in the state. The selection and choice of the 16 LGAs were purposive, based on the advice of the Rivers
1056 State Fisheries Department, due to the high concentration of fishing activities and accessibility of the fishing
1057 communities in the LGAs. In stage two, the five most viable fishery cooperative societies in each LGA were also
1058 purposively selected based on their 2018 revenue figures (RMASDCS, 2018). This gave a total of 80 cooperative
1059 societies. Finally, the researcher used a simple random sampling procedure to select five fishermen from each of
1060 the selected cooperative societies totalling 400 which served as the study sample.

1061 **53 e) Sources of Data**

1062 Data were collected through primary and secondary sources. The primary source was based on structured
1063 questionnaire. On the other hand, the secondary information was from textbooks, journals, conference papers,
1064 and internet publications.

1065 **54 f) Method of Data Collection**

1066 Data were collected through a structured questionnaire that was designed for this purpose.

1067 Copies of the questionnaire were distributed to the 400 cooperative fishermen who served as the sample. The
1068 questionnaire has three sections. Section A contains socioeconomic information about the respondents, while
1069 section B focus on data relating to fishery investments, fish output, revenue, cost of production and overhead
1070 cost. Section C obtained information relating to fish production constraints that affect the members.

1071 **55 Akuku-Toru**

1072 Ogu/Bolo Ikwerre Obio-Akpo Fishery production constraints were identified and assessed through the use of
1073 five-point Likert scale types that ranged from 'Very severe' with a score of 5; 'severe' = 4; undecided = 3; 'not
1074 severe' = 2; to 'not very severe' = 1. A factor is considered severe when it's mean score \geq 3.00 and otherwise if
1075 it was \leq 3.00. The weighted score of 3.00 was determined as follows: $[(5+4+3+2+1) \div 5]$.

1076 The instrument was administered by the researcher and four research assistants.

1077 **56 g) Validation of the Research Instrument**

1078 The questionnaire was validated (face and content) by issuing copies to the measurement and research specialists
1079 at the Faculties of Education and Management Sciences, Nnamdi Azikiwe University, Awka for their comments
1080 and suggestions. Their views on the extent to which the items addressed the issues of interest in the research
1081 were taken into consideration and necessary modifications made on the questionnaire.

1082 **57 h) Reliability of the Instrument**

1083 The reliability of the research instrument was verified by distributing twenty copies of the questionnaire to
1084 twenty members of a fishery cooperative in Port Harcourt Municipal Council for them to complete and return.
1085 The completed forms were thereafter subjected to Cronbach Analysis. A Cronbach Alpha of 0.848 (Table 3.1)
1086 was obtained, thereby attesting to the reliability of the research instrument.

1087 **58 i) Tools of Data Analysis**

1088 Data obtained from respondents were analysed using the descriptive statistics such as frequency distribution,
1089 means, percentages, and tables. The costreturn analysis was undertaken to determine the profitability of fish
1090 production in the area. In addition, inferential statistics such as regression analysis was employed to address and
1091 test the postulated hypotheses.

63 I. SOCIOECONOMIC CHARACTERISTICS OF COOPERATIVE FISH FARMERS

1092 59 j) Cost and Return Analysis

1093 Cost and return analysis were carried out to assess the profitability of fish production by the respondents. The
1094 procedure involves the determination of gross margin, return to fishery investment by respondents and operating
1095 ratio.

1096 Gross margin is the difference between the gross value of fish revenue (GFR) and the Total Variable Cost
1097 (TVC). Gross margin is a useful planning tool in situations where fixed capital is just a negligible portion of the
1098 farming enterprises (Olukosi, Isitor & Ode, 2006; Omotesho, Falola, Muhammad-Lawal & Oyeyemi, 2012). GM
1099 = GFR -TVC Where GM = Gross Margin, GFR = Gross Fish Revenue (gross value of fish output in Naira),
1100 TVC = Total Variable Cost in Naira.

1101 Operating Ratio is directly related to the farm variable input usage (Okeowo, Agunbiade&Odeyem, 1999).
1102 The lower the value of OR, the higher the profitability of fish business. The Profitability of Fish Production by
1103 Co-Operative Society Members in Rivers State, Nigeria Two multiple regression models of the Ordinary Least
1104 Square (OLS) type were used to analyse the extent to which members' socio-economic characteristics influence
1105 profit margin, and to analyse the effect of fish production constraints on profit margin. The choice of the OLS
1106 technique is built on the premise that OLS among other estimators is efficient such that it provides the study
1107 with unique estimates of the parameters of economic relationship that have the smallest standard errors. The
1108 OLS method is also unique and simple, and is preferred to other estimators because of its properties of Best,
1109 Linear and Unbiased Estimates (BLUE) and consistency.

1110 The necessary models in ii above are functionally specified as: PM = f (AG, GD, ED, LM, IV, TI)
1111 ????????????????? Equation ??PM = f (FI, SC, SP, SF, PC, PS, OP) Equation ??Independent Variables are:
1112 .Equation ??where ? = intercept term showing the value of y when each of the values of the independent
1113 variables is zero. That is, the value of the dependent variable in each of the equations is predicted to have when
1114 all the independent variables are equal to zero.

1115 b 1 to b 7 = the coefficients or multipliers that describe the size of the effect the independent variables are
1116 having on the dependent variable y.

1117 The tests of hypotheses were accomplished through an examination of the t-statistics and F-ratios of the
1118 multiple regression estimates and the decision rule was based on the 5% level of significance.

1119 All the calculations and estimations of the regression models will be done using version 25 of the Statistical
1120 Package for Social Sciences (SPSS).

1121 60 IV.

1122 61 Data Presentation, Analysis and Discussion of Findings

1123 This section is dedicated to the presentation, analysis and discussion of findings based on data collected from
1124 the field study, using descriptive and inferential statistical methods. The data were analysed, and presented on
1125 the basis of the objectives earlier formulated for the study. This chapter is discussed under different subsections
1126 such as socioeconomic characteristics of the cooperative fish farmers in Rivers State; profitability of fish business
1127 among cooperative fish farmers in Rivers State; influence of fishery investments and revenues on the profit of the
1128 fish farmers in Rivers State; influence of members' socioeconomic characteristics on the profit of the fish farmers
1129 in Rivers State, as well as the effect of fish production constraints on the profit of fish farmers in Rivers State.

1130 62 a) Data Presentation and Analysis

1131 In carrying out the field survey, a total of 400 questionnaires were distributed to randomly selected cooperative
1132 fish farmers in Rivers state. The data for analysis were retrieved from 400 valid respondents which is 100%
1133 return-rate. The data collected were analysed using SPSS version 25 presented below.

1134 63 i. Socioeconomic Characteristics of Cooperative Fish Farm- 1135 ers

1136 It is part of the objectives of this study to examine the socioeconomic characteristics of cooperative fish farmers
1137 in Rivers State. In this subsection, we present, with the aid of charts, the distribution of respondents by age
1138 group, gender, marital status, educational attainment, years in fishing, years in cooperative and income group.
1139 belong to the income group that earn N60,001 -N100,000 per month. This is followed by 142 (35.5%) cooperative
1140 fish farmers who earn less than N60,000 monthly income. It was gathered that very few cooperative fish farmers,
1141 17 representing 4.25% of the total earn between N100,001 and N150,000 per month. It could be inferred that
1142 majority of the cooperative fish farmers earn less than N100,000 per month, meaning that most of the cooperative
1143 fish farmers belong to the middle-income group.

1144 64 ii. Profitability of Fish Business among Cooperative Fish 1145 Farmers in Rivers State

1146 One of the major objectives (second objective) of this study is to determine the profitability of fish business
1147 among cooperative fish farmers in Rivers State. As earlier outlined in the previous chapter, cost and return
1148 analysis was used for this purpose, and this is based on obtaining that gross margin (difference between the gross
1149 fishery revenue and total variable Based on the calculation above, it could be inferred that fish business among
1150 cooperative in Rivers State is highly profitable. This is because the coefficient of the Operating Ratio (OR) which
1151 is defined by the ratio of the Total Operating Cost (TOC) to Gross Fishery Revenue (GFR) is significantly less
1152 than 1 (i.e. $0.32 < 1$). As a confirmatory analysis, this finding was supported by the coefficient of the Return to
1153 Fish Investment (RFI) which is defined by the ratio of the Gross Margin to Total Variable Cost (TVC) that is
1154 significantly greater than 1 (i.e. $2.99 > 1$).

1155 65 iii. Results of Multiple Regression Analyses

1156 As part of the objectives of this study, the Ordinary Least Squares (OLS) regression was carried out to determine:
1157 (i) the influence of fishery investments and revenues, as well as the members' socio-economic characteristics on
1158 the profit of the fish farmers in Rivers state (see results in Table ???.1), and (ii) the effect of fish production
1159 constraints on the profit of the fish farmers in Rivers state (see results in Table ???.2). This was done in two
1160 distinct multiple regression models using SPSS version 25 as reported in Tables 4.1 and 4.2. The OLS results
1161 in Tables 4.1 and 4.2 are considered robust and do not suffer any econometric problem such as autocorrelation,
1162 heteroskedasticity, multicollinearity and weak explanatory powers. This is because the estimated models each has
1163 considerably high coefficient of determination, defined by the values of the R-squared and Adjusted R-squared.
1164 The R-squared measures how well the actual data is fitted to the specified model which translates to goodness of
1165 fit, as well as the percentage of total variations in the dependent variable that was accounted for by variations in
1166 the independent variables. The Durbin-Watson statistic is another important test-statistic for estimated model
1167 diagnostic and justification. This test-statistic is used to test for the presence of serial correlation problem
1168 (autocorrelation) in an estimated model. One of the assumptions of the OLS technique is that the residuals of
1169 the estimated model are not serially correlated, meaning that the violation of this assumption implies that an
1170 estimated model may not be relied upon for drawing inferences.

1171 In the case of this study, the values of the R-squared for the estimated models in Tables 4.1 and 4.2 are 0.803
1172 and 0.743 respectively, meaning that the explanatory variables accounted for about 80.3% (see Table ???.1) and
1173 74.3% (see Table ???.2) of the total variations in the dependent variable (profit margin). This is an evidence of a
1174 good fit in each model which implies that the estimated models are robust for making inferences. Additionally,
1175 the values of Durbin-Watson (DW) statistic for the two models (2.069 for Table ???.1 and 1.885 for Table ???.2)
1176 were satisfactory and suggestive of no autocorrelation in the estimated models. This is because both 2.069 and
1177 1.885 are proximate to 2, and a DW value of 2 means absence of autocorrelation in the residuals of the estimated
1178 model. This also suggests that the estimated models are robust for prediction and forecasting. Thus, we can
1179 safely report the estimated coefficients in line with the objectives of the study. ??PSS 25 iv.

1180 66 Influence of Fishery Investments and Revenues on Profit of 1181 Cooperative Fish Farmers

1182 The third objective of this study is to examine the influence of fishery investment and revenues on profit
1183 cooperative fish farmers in Rivers State. With regards to Table ???.1, the standardized coefficients of total
1184 investment and total revenue were 0.020 and 0.897 respectively. These coefficients were both positive and
1185 statistically significant at 5% since their p-values were both less than 0.05. This suggests that more investment
1186 in fish business would significantly result to more profit to the cooperative fish farmers in Rivers State, and more
1187 revenue from fish business leads to more profit in the state. The implications of these findings are that those
1188 who invest more on fish business have higher profit than those who invest less, and similarly, those who make
1189 higher revenue also have higher profit margin. Thus, any policy action of the Rivers State government geared
1190 towards encouraging more investment and revenue from fishery business is expected to translate to more profit
1191 to cooperative fish farmers in the state.

1192 67 Influence of Members' Socioeconomic Characteristics on 1193 Profit of Fish Farmers

1194 The fourth objective of this study is to evaluate the influence of cooperative members' socioeconomic character-
1195 istics on profit of the fish farmers in Rivers State. The relevant socioeconomic characteristics for this purpose
1196 are age, gender, educational level and length of cooperative membership (years in cooperative). The results
1197 in Table ???.1 show that all the aforementioned socioeconomic characteristics of cooperative fish farmers have
1198 positive coefficients, meaning that they all relate positively with profit margin. However, only the age bracket is
1199 statistically significant at the 5% level since its p-value is less than 0.05. The positive influence of age of members
1200 on their profit margin is theoretically meaningful since older farmers have more experience in the business and are

1201 more likely to learn from past experiences and tend to take correct their past mistakes for a better performance.
1202 Other socioeconomic attributes of cooperative fish farmers such as gender, educational qualification and years in
1203 cooperative have positive, but not significant determinants of the level of profit margin for the cooperative fish
1204 farmers in Rivers state. Thus, age bracket is the only socioeconomic attribute of the cooperative fish farmers
1205 that positively and significantly influence their profit margin in the state.

1206 **68 vii. Effect of Fish Production Constraints on the Profit of**
1207 **Fish Farmers in Rivers State.**

1208 The fifth and last objective of this study is to ascertain the effect of fish production constraints on the profit of
1209 fish farmers in Rivers state. Based on field survey, the study identifies high cost of fishing inputs, lack of sufficient
1210 capital, storage problem, spoilage of fish, poor catch and oil/industrial pollution as the major fish production
1211 constraints to the cooperative fish farmers in the state. In order to draw meaningful conclusions regarding the
1212 significance of the aforementioned fish production constraints, a model of the profit margin of the cooperative
1213 fish farmers was specified and estimated as a function of these constraints and the results are reported in Table
1214 ?? As shown in Table ??, all the identified fish production constraints have negative effect on the profit of
1215 the cooperative fish farmers and this is consistent with the theoretical expectation of the study, meaning that
1216 the more these constraints persist, the lesser the profit accruable to the cooperative fish farmers in the state.
1217 Also, with the exception of storage problems and spoilage of fish, the rest of the constraints are individually
1218 statistically significant at the 5% level of significance. This suggests that storage problems and spoilage of
1219 fish are not serious constraints to fish production among cooperative fish farmers in the state. Therefore, fish
1220 production among cooperative fish farmers are significantly constrained by factors such as high cost of fishing
1221 inputs, lack of sufficient capital, poor catch, poor sales, and oil/industrial pollution in Rivers State.

1222 **69 b) Evaluation of Research Hypotheses**

1223 In the beginning of this study, some testable hypotheses were formulated to guide the study towards addressing the
1224 research problems. In this subsection, we evaluate these hypotheses based on the results of empirical investigation
1225 presented earlier.

1226 H 0 : Fish business does not significantly generate profit to cooperative fish farmers in Rivers State. H 1 :
1227 Fish business significantly generates profit to cooperative fish farmers in Rivers State.

1228 Based on the result from the Cost and Return Analysis, the coefficient of OR and RFI were 0.32 and 2.99
1229 respectively. Recall that when the value of OR is small and reasonably less than one, we conclude in favour of
1230 high profitability of the business and vice versa. On the other hand, when the value of RFI is greater than one,
1231 we conclude in favour of high profitability of the business. In the case of this study, we therefore reject the null
1232 hypothesis, and conclude that fish business significantly generates profit to cooperative fish farmers in Rivers
1233 State. H 0 : Fishery investments and revenues have no significant influence on profit margin in Rivers State.
1234 With regards to Table ??, it was found that the coefficients of fishery investment and revenues are positive and
1235 statistically significant at the 5% level of significance since their corresponding p-values are less than 0.05. Thus,
1236 we reject the null hypothesis and conclude that fishery investment and revenues have a significant influence on
1237 profit margin in Rivers State.

1238 H 0: Members' socio-economic characteristics do not have a significant effect on profit margin in Rivers State.
1239 H 1 : Members' socio-economic characteristics have a significant effect on profit margin in Rivers State.

1240 Following from the results in Table ??, only the coefficient of age of members is statistically significant at
1241 the 5% level, while the coefficients of other members' socioeconomic characteristics are statistically insignificant
1242 at the 5% level of significance. Thus, we could not reject the null hypothesis that members' socioeconomic
1243 characteristics do not have a significant effect on profit margin, rather we posit that only age bracket of members
1244 have a significant effect on their profit margin, while other socioeconomic attributes do not have a significant
1245 effect on profit margin in the State.

1246 H 0 : Fish production constraints do not have a significant effect on profit margin in Rivers State. H 1 : Fish
1247 production constraints have a significant effect on profit margin in Rivers State.

1248 With reference to the results in Table ??, all fish production constraints as revealed by the cooperative fish
1249 farmers have a significant effect on profit margin, except storage problems and spoilage of fish. Thus, we reject
1250 the null hypothesis and conclude that fish production constraints such as high cost of fishing inputs, lack of
1251 sufficient capital, poor catch, poor sales, and oil/industrial pollution have a significant effect on profit margin in
1252 Rivers State.

1253 **70 c) Discussion of Findings**

1254 This study empirically examined the profitability of fish production among cooperative fish farmers in Rivers
1255 State. Based on data from field survey, the study employed Cost and Return Analysis to determine the
1256 profitability of fish production, as well as descriptive The Profitability of Fish Production by Co-Operative Society
1257 Members in Rivers State, Nigeria (charts) and inferential (OLS regression) statistical methods to determine the
1258 influence of fishery investments and revenues on the profit of the fish farmers; the influence of members' socio-

1259 economic characteristics on the profit of the fish farmers, as well as the effect of fish production constraints on
1260 the profit of fish farmers in Rivers state.

1261 The results of the socioeconomic characteristics of the cooperative fish farmers, using descriptive method,
1262 show that majority of them (84%) are of middle age. This finding is consistent with the finding by Busari (2018)
1263 who concluded that majority of aquaculture farmers in Olorunda local government area of Osun State, Nigeria
1264 was middle-aged. The study also found that majority (93.75%) of the cooperative fish farmers in Rivers State is
1265 male. This finding also supports that of Dambatta, et al. (2016) who concluded that fishing is a male dominated
1266 venture. Consistent with the finding by Busari (2018) that majority of aquaculture farmers are married males, the
1267 study revealed that majority (57.5%) of the cooperative fish farmers, who are mostly male, are married persons.
1268 It was also discovered that majority of the cooperative fish farmers do not have formal education, while some of
1269 them have either primary or secondary education, and very few have tertiary. While this finding supports that
1270 of Agu-Aguiyi, et al. (??018), it stands in contrast to that of Adewuyi, et al. (2010) who disclosed that a large
1271 proportion (68%) of fish farmers in Ogun State have formal (tertiary) education. The study further revealed that
1272 majority (91.5%) of the cooperative fish farmers have spent 1 -10 years in the business, while majority (88%) of
1273 them have spent 1 -5 years in cooperatives.

1274 The result of the Cost and Return Analysis led to the rejection of the null hypothesis that fish business does
1275 not significantly generate profit to cooperative fish farmers in Rivers State. Hence, the study concludes that fish
1276 business in Rivers is a highly profitable venture. This conclusion stands in supports of the finding by ??aufu
1277 ??015) whose conclusions affirmed the profitability of fish business in their respective case studies. This finding
1278 underscores the need to encourage fish production among cooperative fish farmers in Rivers State.

1279 The OLS regression results revealed that fishery investment and revenues have significant positive influence
1280 on profit margin, implying that more investment and revenues would bring about more profit to the cooperative
1281 fish farmers in Rivers State. This led to the rejection of the null hypothesis that fishery investment and revenue
1282 do not significantly influence the profit margin. Incidentally, none of the previous studies reviewed had any
1283 information regarding the influence of fishery investment and revenue on profit margin, and this is another way
1284 this study has contributed to knowledge. The implication of this finding is that if investment in fish business is
1285 encouraged by the government, then the cooperative fish farmers would make more profit. On the other hand,
1286 higher revenue can be made possible through the creation of market for fish farmers by the government. Thus,
1287 the cooperative fish farmers are expected to make more profit when they make higher revenues.

1288 The study could not totally reject the null hypothesis that members' socioeconomic characteristics do not
1289 significantly influence profit margin, rather the study posits that only the age bracket of members influences
1290 profit margin. In other words, ages of cooperative members has positive and significant effect on profit margin.
1291 This finding seems not peculiar to us as it is theoretically plausible to note that the older the cooperative fish
1292 famer, the more experienced he becomes, and tends to adjust his operations based on past mistakes. Thus, the
1293 more experienced cooperative fish farmers are more likely to perform better than those with less experience and
1294 new to the business. This information was not captured in the previous studies as reviewed in this study, and
1295 thus forms another contribution to knowledge by this study.

1296 In determining the major fish production constraints, the study found that high cost of fishing inputs; lack of
1297 sufficient capital; poor catch; poor sales, and oil/industrial pollution are the major fish production constraints in
1298 Rivers State. High cost of inputs has always been a problem to virtually every business in Nigeria. Even Busari
1299 (2018) concluded in affirmative that the cost of fingerlings and pond maintenance were significant determinants
1300 of gross margin from homestead aquaculture in Olorunda local government area, Osun State, Nigeria. Lack of
1301 sufficient capital had been a major problem of both small and medium-scale businesses around the world, and in
1302 the case of this study, lack of sufficient capital has significant negative effect on profit margin. This implies that
1303 the cooperative fish farmers are severely constrained by lack of sufficient capital, meaning that if the government
1304 of Rivers State can make provision for low-interest credit facilities, the cooperative fish farmers would make
1305 more profits. Poor catch and poor sales are serious impediment to the ability of the cooperative fish farmers
1306 to maximize profit. This could be due to lack of adequate fishing instruments that will facilitate their catches,
1307 as well as poor market for their products due to higher prices. Another serious constraint to fish production in
1308 Rivers state is oil/industrial pollution. It is in no doubt that Rivers State is a place of strong industrial and oil
1309 production activities which tend to spill over to those Rivers where fishing activities are taking place. Pollution,
1310 especially from oil spillage and industrial gas emission, could be poisonous to fishes in the river and tend to kill
1311 and reduce their sizes, leading to scarcity of fishes, and hence the poor catch. Incidentally, the previous studies
1312 as reviewed in this study did not capture the effect of other fish production constraints on profit margin, except
1313 for the high cost of inputs found in Busari (2018).

1314 V.

1315 71 Summary of Findings, Conclusion and Recommendations

1316 This section summarizes the main findings of the study followed by the conclusion and the recommendations
1317 which is drawn from the findings.

1318 **72 a) Summary of Findings**

1319 The main aim of this study is to evaluate the profitability of fish production among cooperative fish farmers in
1320 Rivers State, Nigeria. Some specific objectives were stated such as to: analyse the socioeconomic characteristics of
1321 the cooperative fish farmers; determine the profitability of fish business among cooperative fish farmers; examine
1322 the influence of fishery investments and revenues on the profit of the fish farmers; evaluate the influence of
1323 members' socioeconomic characteristics on the profit of the fish farmers, as well as to determine the effect of fish
1324 production constraints on the profit of fish farmers in Rivers state. In line with these objectives, some testable
1325 hypotheses were formulated to guide the study towards addressing the research questions.

1326 The study made adequate review of conceptual, theoretical and empirical literature from where the knowledge
1327 gaps were identified, as well as gaining useful insights into the core issues around the subject matter. The study
1328 is based on survey research design where data were collected through primary source using questionnaire as the
1329 instrument of data collection. A total of 400 copies of questionnaire were distributed to cooperative fish farmers
1330 in 16 LGAs of 4 agric zones in Rivers State. Based on data from field survey, the study employed Cost and
1331 Return Analysis to determine the profitability of fish production, as well as descriptive (charts) and inferential
1332 (OLS regression) statistical methods to analyse data in line with the objectives of the study. On the course of
1333 this study, the following findings were made:

1334 Majority of cooperative fish farmers in Rivers State are male (93.75%), who are in their middle age (84%),
1335 married (57.5%) but mostly illiterates (with no formal education or have only primary education), and have spent
1336 between 6-10 years in fishing business and 1-5 years in cooperatives.

1337 Majority (60.25%) of the cooperative fish farmers earn between N60,001 -N100,000 per month from the fishing
1338 business.

1339 The profitability analysis based on Cost and Return Analysis revealed that fish production among cooperatives
1340 fish farmers is a profitable venture.

1341 Fishery investment and revenues contribute positively to the profit of cooperative fish farmers in Rivers State.

1342 Older cooperative fish farmers are more likely to earn more profit than the younger ones in Rivers State.

1343 High cost of fishing inputs; lack of sufficient capital; poor catch; poor sales, and oil/industrial pollution are
1344 the major fish production constraints in Rivers State.

1345 **73 VI.**

1346 **74 Conclusion**

1347 The study examined the profitability of fish production among cooperative fish farmers in Rivers State, Nigeria.
1348 Some specific objectives were stated such as to: analyse the socioeconomic characteristics of the cooperative
1349 fish farmers; determine the profitability of fish business among cooperative fish farmers; examine the influence
1350 of fishery investments and revenues on the profit of the fish farmers; evaluate the influence of members' socio-
1351 economic characteristics on the profit of the fish farmers, as well as to determine the effect of fish production
1352 constraints on the profit of fish farmers in Rivers state. The study is based on survey research design where data
1353 were collected through the primary source using questionnaire as the instrument of data collection. A total of
1354 400 copies of questionnaire were distributed to cooperative fish farmers in 16 LGAs of 4 agricultural zones in
1355 Rivers State. Based on data from field survey, the study employed Cost and Return Analysis to determine the
1356 profitability of fish production, as well as descriptive (charts) and inferential (OLS regression) statistical methods
1357 to analyse data in line with the objectives of the study. Based on its findings, the study concludes that majority
1358 of cooperative fish farmers in Rivers state are male, who are in their middle age, married but mostly illiterates
1359 with either no formal education or have only primary education, and have spent between 6-10 years in fishing
1360 business and 1-5 years in cooperatives; fish production among cooperatives fish farmers is a profitable venture in
1361 Rivers state; fishery investment and revenues contribute positively to the profit of cooperative fish farmers in the
1362 state, and high cost of fishing inputs; lack of sufficient capital; poor catch; poor sales, and oil/industrial pollution
1363 are the major fish production constraints in Rivers State.

1364 **75 VII.**

1365 **76 Recommendations**

1366 Based on the findings of this study, the following recommendations are proffered: Fish production by the
1367 cooperative fish farmers is a profitable venture where farmers earn between N60,001 and N100,000 per month,
1368 averaging The instrument was administered by the researcher and four research assistants.

1369 **77 Global Journal of Management and Business Research**

1370 Volume XX Issue X Version I Year 2020() B © 2020 Global Journals

1371 The Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria

1372 **78 a) Validation of the Research Instrument**

1373 The questionnaire was validated (face and content) by issuing copies to the measurement and research specialists
1374 at the Faculties of Education and Management Sciences, Nnamdi Azikiwe University, Awka for their comments
1375 and suggestions. Their views on the extent to which the items addressed the issues of interest in the research
1376 were taken into consideration and necessary modifications made on the questionnaire.

1377 **79 b) Reliability of the Instrument**

1378 The reliability of the research instrument was verified by distributing twenty copies of the questionnaire to
1379 twenty members of a fishery cooperative in Port Harcourt Municipal Council for them to complete and return.
1380 The completed forms were thereafter subjected to Cronbach Analysis. A Cronbach Alpha of 0.848 (Table 3.1)
1381 was obtained, thereby attesting to the reliability of the research instrument.

1382 **80 c) Tools of Data Analysis**

1383 Data obtained from respondents were analysed using the descriptive statistics such as frequency distribution,
1384 means, percentages, and tables. The costreturn analysis was undertaken to determine the profitability of fish
1385 production in the area. In addition, inferential statistics such as regression analysis was employed to address and
1386 test the postulated hypotheses.

1387 **81 d) Cost and Return Analysis**

1388 Cost and return analysis were carried out to assess the profitability of fish production by the respondents. The
1389 procedure involves the determination of gross margin, return to fishery investment by respondents and operating
1390 ratio.

1391 Gross margin is the difference between the gross value of fish revenue (GFR) and the Total Variable Cost
1392 (TVC). Gross margin is a useful planning tool in situations where fixed capital is just a negligible portion of the
1393 farming enterprises (Olukosi, Isitor& Ode, 2006; Omotesho, Falola, Muhammad-Lawal & Oyeyemi, 2012). $GM = GFR - TVC$ Where GM = Gross Margin, GFR = Gross Fish Revenue (gross value of fish output in Naira), TVC
1394 = Total Variable Cost in Naira. Operating Ratio is directly related to the farm variable input usage (Okeowo,
1395 Agunbiade & Odeyemi, 1999). The lower the value of OR, the higher the profitability of fish business. $OR = TOC/GFR$ Where OR = Operating Ratio, TOC = Total Operating Cost in Naira and GFR = As earlier defined
1396 Return to Fishery Investment is defined as gross margin divided by total variable cost $RFI = GM/TVC$ Where
1397 RFI = Return to fishery investments GM = as earlier defined, and TVC = as earlier defined Multiple Regression
1398 Analysis Two multiple regression models of the Ordinary Least Square (OLS) type were used to analyse the
1399 extent to which members' socio-economic characteristics influence profit margin, and to analyse the effect of fish
1400 production constraints on profit margin. The choice of the OLS technique is built on the premise that OLS among
1401 other estimators is efficient such that it provides the study with unique estimates of the parameters of economic
1402 relationship that have the smallest standard errors. The OLS method is also unique and simple, and is preferred
1403 to other estimators because of its properties of Best, Linear and Unbiased Estimates (BLUE) and consistency.
1404 For all the equations above we assumed that there are approximately linear relationships between the dependent
1405 variables and the independent variables. Therefore, equations 1 and 2 are explicitly specified as: ??where $? =$
1406 intercept term showing the value of y when each of the values of the independent variables is zero. That is, the
1407 value of the dependent variable in each of the equations is predicted to have when all the independent variables
1408 are equal to zero. b_1 to b_7 = the coefficients or multipliers that describe the size of the effect the independent
1409 variables are having on the dependent variable y . $PM = ? + ? 1 AG + ? 2 GD + ? 3 ED + ? 4 LM + ? 5 LC +$
1410 $? 6 TI + ? ????????$. Equation 3 $PM = ? + ? 1 FI + ? 2 SC + ? 3 SP + ? 4 SF + ? 5 PC + ? 6 PS + ? 7 OP$
1411 $+ ? ??????$. Equation

1412 The tests of hypotheses were accomplished through an examination of the t-statistics and F-ratios of the
1413 multiple regression estimates and the decision rule was based on the 5% level of significance.

1414 All the calculations and estimations of the regression models will be done using version 25 of the Statistical
1415 Package for Social Sciences (SPSS).

1418 **82 VIII. Data Presentation, Analysis and Discussion of Find- 1419 ings**

1420 This section is dedicated to the presentation, analysis and discussion of findings based on data collected from
1421 the field study, using descriptive and inferential statistical methods. The data were analysed, and presented on
1422 the basis of the objectives earlier formulated for the study. This chapter is discussed under different subsections
1423 such as socioeconomic characteristics of the cooperative fish farmers in Rivers state; profitability of fish business
1424 among cooperative fish farmers in Rivers state; influence of fishery investments and revenues on the profit of the
1425 fish farmers in Rivers state; influence of members' socioeconomic characteristics on the profit of the fish farmers
1426 in Rivers state, as well as the effect of fish production constraints on the profit of fish farmers in Rivers state.

1427 **83 a) Data Presentation and Analysis**

1428 In carrying out the field survey, a total of questionnaires were distributed to randomly selected cooperative
1429 fish farmers in Rivers state. The data for analysis were retrieved from 400 valid respondents which is 100%
1430 return-rate. The data collected were analysed using SPSS version 25 presented below.

1431 **84 b) Socioeconomic Characteristics of Cooperative Fish Farm-
1432 ers**

1433 It is part of the objectives of this study to examine the socioeconomic characteristics of cooperative fish farmers in
1434 Rivers state. In this subsection, we present, with the aid of charts, the distribution of respondents by age group,
1435 gender, marital status, educational attainment, years in fishing, years in cooperative and income group. (5.75%)
1436 had tertiary education. This shows that the respondents to a large extent are illiterates since 247 representing
1437 61.75% of the respondents are either with no formal education or had only the basic primary education, while
1438 the remaining 153 cooperative fish farmers representing 38.25% had either secondary education, advanced or
1439 tertiary education. The distribution shows that most of the cooperative fish farmers did not attain higher level
1440 of education. Fig. 4.7 shows the distribution of the respondents by monthly income group. It is evident that
1441 majority of the cooperative fish farmers, 241 (60.25%) belong to the income group that earn N60,001 -N100,000
1442 per month. This is followed by 142 (35.5%) cooperative fish farmers who earn less than N60,000 monthly income.
1443 It was gathered that very few cooperative fish farmers, 17 representing 4.25% of the total earn between N100,001
1444 and N150,000 per month. It could be inferred that majority of the cooperative fish farmers earn less than
1445 N100,000 per month, meaning that most of the cooperative fish farmers belong to the middle-income group.

1446 **85 c) Profitability of Fish Business among Cooperative Fish
1447 Farmers in Rivers State**

1448 One of the major objectives (second objective) of this study is to determine the profitability of fish business
1449 among cooperative fish farmers in Rivers State. As earlier outlined in the previous chapter, cost and return
1450 analysis was used for this purpose, and this is based on obtaining that gross margin (difference between the gross
1451 fishery revenue and total variable Based on the calculation above, it could be inferred that fish business among
1452 cooperative in Rivers State is highly profitable. This is because the coefficient of the Operating Ratio (OR) which
1453 is defined by the ratio of the Total Operating Cost (TOC) to Gross Fishery Revenue (GFR) is significantly less
1454 than 1 (i.e. $0.32 < 1$). As a confirmatory analysis, this finding was supported by the coefficient of the Return to
1455 Fish Investment (RFI) which is defined by the ratio of the Gross Margin to Total Variable Cost (TVC) that is
1456 significantly greater than 1 (i.e. $2.99 > 1$).

1457 **86 d) Results of Multiple Regression Analyses**

1458 As part of the objectives of this study, the Ordinary Least Squares (OLS) regression was carried out to determine:
1459 (i) the influence of fishery investments and revenues, as well as the members' socio-economic characteristics on
1460 the profit of the fish farmers in Rivers state (see results in Table ???.1), and (ii) the effect of fish production
1461 constraints on the profit of the fish farmers in Rivers state (see results in Table ???.2). This was done in two
1462 distinct multiple regression models using SPSS version 25 as reported in Tables 4.1 and 4.2. The OLS results
1463 in Tables 4.1 and 4.2 are considered robust and do not suffer any econometric problem such as autocorrelation,
1464 heteroskedasticity, multicollinearity and weak explanatory powers. This is because the estimated models each has
1465 considerably high coefficient of determination, defined by the values of the R-squared and Adjusted R-squared.
1466 The R-squared measures how well the actual data is fitted to the specified model which translates to goodness of
1467 fit, as well as the percentage of total variations in the dependent variable that was accounted for by variations in
1468 the independent variables. The Durbin-Watson statistic is another important test-statistic for estimated model
1469 diagnostic and justification. This test-statistic is used to test for the presence of serial correlation problem
1470 (autocorrelation) in an estimated model. One of the assumptions of the OLS technique is that the residuals of
1471 the estimated model are not serially correlated, meaning that the violation of this assumption implies that an
1472 estimated model may not be relied upon for drawing inferences.

1473 In the case of this study, the values of the Rsquared for the estimated models in Tables 4.1 and 4.2 are 0.803
1474 and 0.743 respectively, meaning that the explanatory variables accounted for about 80.3% (see Table ???.1) and
1475 74.3% (see Table ???.2) of the total variations in the dependent variable (profit margin). This is an evidence of a
1476 good fit in each model which implies that the estimated models are robust for making inferences. Additionally,
1477 the values of Durbin-Watson (DW) statistic for the two models (2.069 for Table ???.1 and 1.885 for Table ???.2)
1478 were satisfactory and suggestive of no autocorrelation in the estimated models. This is because both 2.069 and
1479 1.885 are proximate to 2, and a DW value of 2 means absence of autocorrelation in the residuals of the estimated
1480 model. This also suggests that the estimated models are robust for prediction and forecasting. Thus, we can
1481 safely report the estimated coefficients in line with the objectives of the study. The third objective of this study
1482 is to examine the influence of fishery investment and revenues on profit cooperative fish farmers in Rivers State.
1483 With regards to Table ???.1, the standardized coefficients of total investment and total revenue were 0.020 and
1484 0.897 respectively. These coefficients were both positive and statistically significant at 5% since their p-values

1485 were both less than 0.05. This suggests that more investment in fish business would significantly result to more
1486 profit to the cooperative fish farmers in Rivers State, and more revenue from fish business leads to more profit in
1487 the state. The implications of these findings are that those who invest more on fish business have higher profit
1488 than those who invest less, and similarly, those who make higher revenue also have higher profit margin. Thus,
1489 any policy action of the Rivers State government geared towards encouraging more investment and revenue from
1490 fishery business is expected to translate to more profit to cooperative fish farmers in the state.

1491 **87 f) Influence of Members' Socioeconomic Characteristics on 1492 Profit of Fish Farmers**

1493 The fourth objective of this study is to evaluate the influence of cooperative members' socioeconomic characteristics
1494 on profit of the fish farmers in Rivers State. The relevant socioeconomic characteristics for this purpose
1495 are age, gender, educational level and length of cooperative membership (years in cooperative). The results
1496 in Table ???.1 show that all the aforementioned socioeconomic characteristics of cooperative fish farmers have
1497 positive coefficients, meaning that they all relate positively with profit margin. However, only the age bracket is
1498 statistically significant at the 5% level since its p-value is less than 0.05. The positive influence of age of members
1499 on their profit margin is theoretically meaningful since older farmers have more experience in the business and are
1500 more likely to learn from past experiences and tend to take correct their past mistakes for a better performance.
1501 Other socioeconomic attributes of cooperative fish farmers such as gender, educational qualification and years in
1502 cooperative have positive, but not significant determinants of the level of profit margin for the cooperative fish
1503 farmers in Rivers state. Thus, age bracket is the only socioeconomic attribute of the cooperative fish farmers
1504 that positively and significantly influence their profit margin in the state.

1505 **88 g) Effect of Fish Production Constraints on the Profit of**

1506 Fish Farmers in Rivers State.

1507 The fifth and last objective of this study is to ascertain the effect of fish production constraints on the profit of
1508 fish farmers in Rivers state. Based on field survey, the study identifies high cost of fishing inputs, lack of sufficient
1509 capital, storage problem, spoilage of fish, poor catch and oil/industrial pollution as the major fish production
1510 constraints to the cooperative fish farmers in the state. In order to draw meaningful conclusions regarding the
1511 significance of the aforementioned fish production constraints, a model of the profit margin of the cooperative
1512 fish farmers was specified and estimated as a function of these constraints and the results are reported in Table
1513 ?? As shown in Table ???.2, all the identified fish production constraints have negative effect on the profit of
1514 the cooperative fish farmers and this is consistent with the theoretical expectation of the study, meaning that
1515 the more these constraints persist, the lesser the profit accruable to the cooperative fish farmers in the state.
1516 Also, with the exception of storage problems and spoilage of fish, the rest of the constraints are individually
1517 statistically significant at the 5% level of significance. This suggests that storage problems and spoilage of
1518 fish are not serious constraints to fish production among cooperative fish farmers in the state. Therefore, fish
1519 production among cooperative fish farmers are significantly constrained by factors such as high cost of fishing
1520 inputs, lack of sufficient capital, poor catch, poor sales, and oil/industrial pollution in Rivers State.

1521 **89 h) Evaluation of Research Hypotheses**

1522 In the beginning of this study, some testable hypotheses were formulated to guide the study towards addressing the
1523 research problems. In this subsection, we evaluate these hypotheses based on the results of empirical investigation
1524 presented earlier.

1525 H 0 : Fish business does not significantly generate profit to cooperative fish farmers in Rivers state.

1526 H 1 : Fish business significantly generates profit to cooperative fish farmers in Rivers state.

1527 Based on the result from the Cost and Return Analysis, the coefficient of OR and RFI were 0.32 and 2.99
1528 respectively. Recall that when the value of OR is small and reasonably less than one, we conclude in favour of
1529 high profitability of the business and vice versa. On the other hand, when the value of RFI is greater than one,
1530 we conclude in favour of high profitability of the business. In the case of this study, we therefore reject the null
1531 hypothesis, and conclude that fish business significantly generates profit to cooperative fish farmers in Rivers
1532 State.

1533 H 0 : Fishery investments and revenues have no significant influence on profit margin in Rivers state. H 1 :
1534 Fishery investments and revenues have a significant influence on profit margin in Rivers state.

1535 With regards to Table ???.1, it was found that the coefficients of fishery investment and revenues are positive
1536 and statistically significant at the 5% level of significance since their corresponding p-values are less than 0.05.
1537 Thus, we reject the null hypothesis and conclude that fishery investment and revenues have a significant influence
1538 on profit margin in Rivers State.

1539 H 0: Members' socio-economic characteristics do not have a significant effect on profit margin in Rivers state.

1540 H 1 : Members' socio-economic characteristics have a significant effect on profit margin in Rivers state.

1541 Following from the results in Table ???.1, only the coefficient of age of members is statistically significant at
1542 the 5% level, while the coefficients of other members' socioeconomic characteristics are statistically insignificant

1543 at the 5% level of significance. Thus, we could not reject the null hypothesis that members' socioeconomic
1544 characteristics do not have a significant effect on profit margin, rather we posit that only age bracket of members
1545 have a significant effect on their profit margin, while other socioeconomic attributes do not have a significant
1546 effect on profit margin in the State. H 0 : Fish production constraints do not have a significant effect on profit
1547 margin in Rivers state. H 1 : Fish production constraints have a significant effect on profit margin in Rivers
1548 state.

1549 With reference to the results in Table ???.2, all fish production constraints as revealed by the cooperative fish
1550 farmers have a significant effect on profit margin, except storage problems and spoilage of fish. Thus, we reject
1551 the null hypothesis and conclude that fish production constraints such as high cost of fishing inputs, lack of
1552 sufficient capital, poor catch, poor sales, and oil/industrial pollution have a significant effect on profit margin in
1553 Rivers State.

1554 90 i) Discussion of Findings

1555 This study empirically examined the profitability of fish production among cooperative fish farmers in Rivers
1556 State. Based on data from field survey, the study employed Cost and Return Analysis to determine the
1557 profitability of fish production, as well as descriptive (charts) and inferential (OLS regression) statistical The
1558 Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria methods to determine
1559 the influence of fishery investments and revenues on the profit of the fish farmers; the influence of members' socio-
1560 economic characteristics on the profit of the fish farmers, as well as the effect of fish production constraints on
1561 the profit of fish farmers in Rivers state.

1562 The results of the socioeconomic characteristics of the cooperative fish farmers, using descriptive method,
1563 show that majority of them (84%) are of middle age. This finding is consistent with the finding by Busari (2018)
1564 who concluded that majority of aquaculture farmers in Olorunda local government area of Osun State, Nigeria
1565 was middle-aged. The study also found that majority (93.75%) of the cooperative fish farmers in Rivers State is
1566 male. This finding also supports that of Dambatta, et al. (2016) who concluded that fishing is a male dominated
1567 venture. Consistent with the finding by Busari (2018) that majority of aquaculture farmers are married males, the
1568 study revealed that majority (57.5%) of the cooperative fish farmers, who are mostly male, are married persons.
1569 It was also discovered that majority of the cooperative fish farmers do not have formal education, while some of
1570 them have either primary or secondary education, and very few have tertiary. While this finding supports that
1571 of Agu-Aguiyi, et al. (??018), it stands in contrast to that of Adewuyi, et al. (2010) who disclosed that a large
1572 proportion (68%) of fish farmers in Ogun State have formal (tertiary) education. The study further revealed that
1573 majority (91.5%) of the cooperative fish farmers have spent 1 -10 years in the business, while majority (88%) of
1574 them have spent 1 -5 years in cooperatives.

1575 The result of the Cost and Return Analysis led to the rejection of the null hypothesis that fish business does
1576 not significantly generate profit to cooperative fish farmers in Rivers State. Hence, the study concludes that fish
1577 business in Rivers is a highly profitable venture. This conclusion stands in supports of the finding by Raufu
1578 The OLS regression results revealed that fishery investment and revenues have significant positive influence on
1579 profit margin, implying that more investment and revenues would bring about more profit to the cooperative
1580 fish farmers in Rivers State. This led to the rejection of the null hypothesis that fishery investment and revenue
1581 do not significantly influence the profit margin. Incidentally, none of the previous studies reviewed had any
1582 information regarding the influence of fishery investment and revenue on profit margin, and this is another way
1583 this study has contributed to knowledge. The implication of this finding is that if investment in fish business is
1584 encouraged by the government, then the cooperative fish farmers would make more profit. On the other hand,
1585 higher revenue can be made possible through the creation of market for fish farmers by the government. Thus,
1586 the cooperative fish farmers are expected to make more profit when they make higher revenues.

1587 The study could not totally reject the null hypothesis that members' socioeconomic characteristics do not
1588 significantly influence profit margin, rather the study posits that only the age bracket of members influences
1589 profit margin. In other words, ages of cooperative members has positive and significant effect on profit margin.
1590 This finding seems not peculiar to us as it is theoretically plausible to note that the older the cooperative fish
1591 famer, the more experienced he becomes, and tends to adjust his operations based on past mistakes. Thus, the
1592 more experienced cooperative fish farmers are more likely to perform better than those with less experience and
1593 new to the business. This information was not captured in the previous studies as reviewed in this study, and
1594 thus forms another contribution to knowledge by this study.

1595 In determining the major fish production constraints, the study found that high cost of fishing inputs; lack of
1596 sufficient capital; poor catch; poor sales, and oil/industrial pollution are the major fish production constraints in
1597 Rivers State. High cost of inputs has always been a problem to virtually every business in Nigeria. Even Busari
1598 (2018) concluded in affirmative that the cost of fingerlings and pond maintenance were significant determinants
1599 of gross margin from homestead aquaculture in Olorunda local government area, Osun State, Nigeria. Lack of
1600 sufficient capital had been a major problem of both small and medium-scale businesses around the world, and in
1601 the case of this study, lack of sufficient capital has significant negative effect on profit margin. This implies that
1602 the cooperative fish farmers are severely constrained by lack of sufficient capital, meaning that if the government
1603 of Rivers State can make provision for low-interest credit facilities, the cooperative fish farmers would make
1604 more profits. Poor catch and poor sales are serious impediment to the ability of the cooperative fish farmers

1605 to maximize profit. This could be due to lack of adequate fishing instruments that will facilitate their catches,
1606 as well as poor market for their products due to higher prices. Another serious constraint to fish production in
1607 Rivers state is oil/industrial pollution. It is in no doubt that Rivers State is a place of strong industrial and oil
1608 production activities which tend to spill over to those Rivers where fishing activities are taking place. Pollution,
1609 especially from oil spillage and industrial gas emission, could be poisonous to fishes in the river and tend to kill
1610 and reduce their sizes, leading to scarcity of fishes, and The Profitability of Fish Production by Co-Operative
1611 Society Members in Rivers State, Nigeria hence the poor catch. Incidentally, the previous studies as reviewed in
1612 this study did not capture the effect of other fish production constraints on profit margin, except for the high
1613 cost of inputs found in Busari (2018).

1614 IX.

1615 **91 Summary of Findings, Conclusion and Recommendations**

1616 This section summarizes the main findings of the study followed by the conclusion and the recommendations
1617 which is drawn from the findings.

1618 **92 a) Summary of Findings**

1619 The main aim of this study is to evaluate the profitability of fish production among cooperative fish farmers in
1620 Rivers State, Nigeria. Some specific objectives were stated such as to: analyse the socioeconomic characteristics of
1621 the cooperative fish farmers; determine the profitability of fish business among cooperative fish farmers; examine
1622 the influence of fishery investments and revenues on the profit of the fish farmers; evaluate the influence of
1623 members' socioeconomic characteristics on the profit of the fish farmers, as well as to determine the effect of fish
1624 production constraints on the profit of fish farmers in Rivers state. In line with these objectives, some testable
1625 hypotheses were formulated to guide the study towards addressing the research questions.

1626 The study made adequate review of conceptual, theoretical and empirical literature from where the knowledge
1627 gaps were identified, as well as gaining useful insights into the core issues around the subject matter. The study
1628 is based on survey research design where data were collected through primary source using questionnaire as the
1629 instrument of data collection. A total of 400 copies of questionnaire were distributed to cooperative fish farmers
1630 in 16 LGAs of 4 agric zones in Rivers State. Based on data from field survey, the study employed Cost and
1631 Return Analysis to determine the profitability of fish production, as well as descriptive (charts) and inferential
1632 (OLS regression) statistical methods to analyse data in line with the objectives of the study. On the course of
1633 this study, the following findings were made:

1634 Majority of cooperative fish farmers in Rivers state are male (93.75%), who are in their middle age (84%),
1635 married (57.5%) but mostly illiterates (with no formal education or have only primary education), and have spent
1636 between 6-10 years in fishing business and 1-5 years in cooperatives.

1637 Majority (60.25%) of the cooperative fish farmers earn between N60,001 -N100,000 per month from the fishing
1638 business.

1639 The profitability analysis based on Cost and Return Analysis revealed that fish production among cooperatives
1640 fish farmers is a profitable venture.

1641 Fishery investment and revenues contribute positively to the profit of cooperative fish farmers in Rivers State.

1642 Older cooperative fish farmers are more likely to earn more profit than the younger ones in Rivers state.

1643 High cost of fishing inputs; lack of sufficient capital; poor catch; poor sales, and oil/industrial pollution are
1644 the major fish production constraints in Rivers State.

1645 X.

1646 **93 Conclusion**

1647 The study examined the profitability of fish production among cooperative fish farmers in Rivers State, Nigeria.
1648 Some specific objectives were stated such as to: analyse the socioeconomic characteristics of the cooperative
1649 fish farmers; determine the profitability of fish business among cooperative fish farmers; examine the influence
1650 of fishery investments and revenues on the profit of the fish farmers; evaluate the influence of members' socio-
1651 economic characteristics on the profit of the fish farmers, as well as to determine the effect of fish production
1652 constraints on the profit of fish farmers in Rivers state. The study is based on survey research design where data
1653 were collected through the primary source using questionnaire as the instrument of data collection. A total of 400
1654 copies of questionnaire were distributed to cooperative fish farmers in 16 LGAs of 4 agric zones in Rivers State.
1655 Based on data from field survey, the study employed Cost and Return Analysis to determine the profitability of
1656 fish production, as well as descriptive (charts) and inferential (OLS regression) statistical methods to analyse data
1657 in line with the objectives of the study. Based on its findings, the study concludes that majority of cooperative
1658 fish farmers in Rivers state are male, who are in their middle age, married but mostly illiterates with either no
1659 formal education or have only primary education, and have spent between 6-10 years in fishing business and 1-5
1660 years in cooperatives; fish production among cooperatives fish farmers is a profitable venture in Rivers state;
1661 fishery investment and revenues contribute positively to the profit of cooperative fish farmers in the state, and
1662 high cost of fishing inputs; lack of sufficient capital; poor catch; poor sales, and oil/industrial pollution are the
1663 major fish production constraints in Rivers State.

1664 **94 XI.**

1665 **95 Recommendations**

1666 Based on the findings of this study, the following recommendations are proffered: i.

1667 Fish production by the cooperative fish farmers is a profitable venture where farmers earn between N60,001
1668 and N100,000 per month, averaging N80,000 per month in a country where the minimum wage is N18,000 per
1669 month. However, fish production among cooperative fish farmers is The Profitability of Fish Production by
1670 Co-Operative Society Members in Rivers State, Nigeria severely constrained by high cost of fishing inputs. Thus,
1671 the government of Rivers State should make provision for fish production subsidies such as provision of fund and
1672 some strategic fishing inputs to the cooperative fish farmers in the state.

1673 ii.

1674 Investment in fishery contributes to the profit of the cooperative fish farmers in Rivers State, and there are
1675 usually high returns to fishery investment, but fish production in the state is highly constrained by lack of sufficient
1676 capital to invest in the business. Therefore, there is need for the government of Rivers State to collaborate with
1677 the various fish production cooperative societies to encourage investment in fishery through the provision of
1678 lowinterest loans since it is usually difficult to obtain loans from the conventional banking institutions. iii.

1679 Revenues from the sale of fishery products contribute to the growth of profit in fish production in Rivers State,
1680 but fish production is heavily constrained by poor sales. Revenues can be enhanced through the creation of
1681 market for the sales of fishery products. Thus, the government should set up a specific marketing board for fish
1682 production in order to engender rapid sales and turnover in fish production. iv. There is need for the provision
1683 of adequate modern instruments to encourage bumper catch. The various cooperatives can unite and collaborate
1684 with the state government to secure enough modern fishing instruments so as to overcome the problem of poor
1685 catch. Poor catch may have also been caused by scarcity of fish in the river due to oil/industrial pollution that
1686 may have killed and reduced the quantity of fish in the river. In this case, the government should properly regular
1687 oil and industrial production activities in the state to reduce pollution. v.

1688 80,000 per month in a country where the minimum wage is N18,000 per month. However, fish production
1689 among cooperative fish farmers is severely constrained by high cost of fishing inputs. Thus, the government of
1690 Rivers State should make provision for fish production subsidies such as provision of fund and some strategic
1691 fishing inputs to the cooperative fish farmers in the state. vi.

1692 Investment in fishery contributes to the profit of the cooperative fish farmers in Rivers state, and there are
1693 usually high returns to fishery investment, but fish production in the state is highly constrained by lack of sufficient
1694 capital to invest in the business. Therefore, there is need for the government of Rivers State to collaborate with
1695 the various fish production cooperative societies to encourage investment in fishery through the provision of
1696 lowinterest loans since it is usually difficult to obtain loans from the conventional banking institutions. vii.
1697 Revenues from the sale of fishery products contribute to the growth of profit in fish production in Rivers state,
1698 but fish production is heavily constrained by poor sales. Revenues can be enhanced through the creation of
1699 market for the sales of fishery products. Thus, the government should set up a specific marketing board for fish
1700 production in order to engender rapid sales and turnover in fish production. viii.

1701 There is need for the provision of adequate modern instruments to encourage bumper catch. The various
1702 cooperatives can unite and collaborate with the state government to secure enough modern fishing instruments
1703 so as to overcome the problem of poor catch. Poor catch may have also been caused by scarcity of fish in the river
1704 due to oil/industrial pollution that may have killed and reduced the quantity of fish in the river. In this case,
1705 the government should properly regular oil and industrial production activities in the state to reduce pollution.

1706 **96 Appendix one**

1707 **97 General**

1708 1 2 3

¹() B © 2020 Global JournalsThe Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria

²© 2020 Global JournalsThe Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria

³© 2020 Global Journals The Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria Source: Author's Computation from the Field Study (2019) Source: Author's Computation from the Field Study (2019)

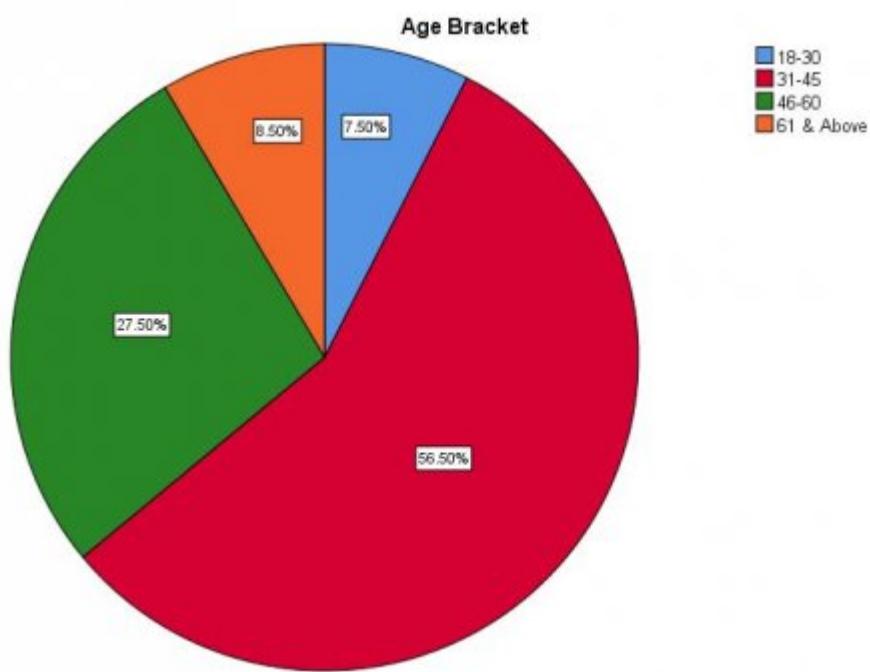
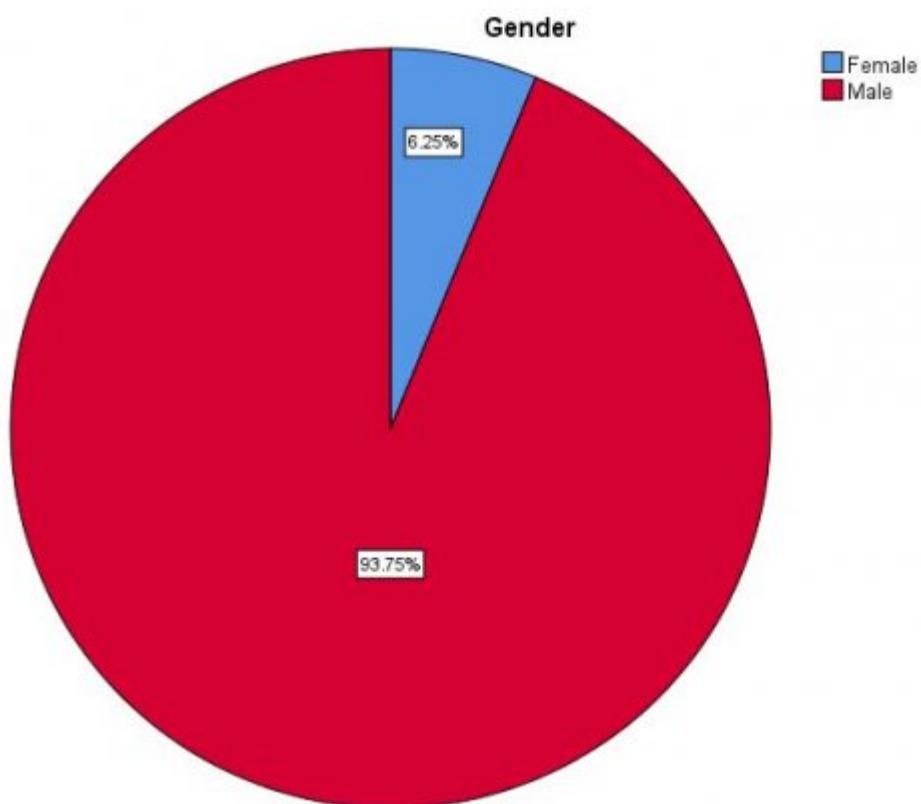



Figure 1:

341

Figure 2: Table 3 . 4 . 1 :Selected

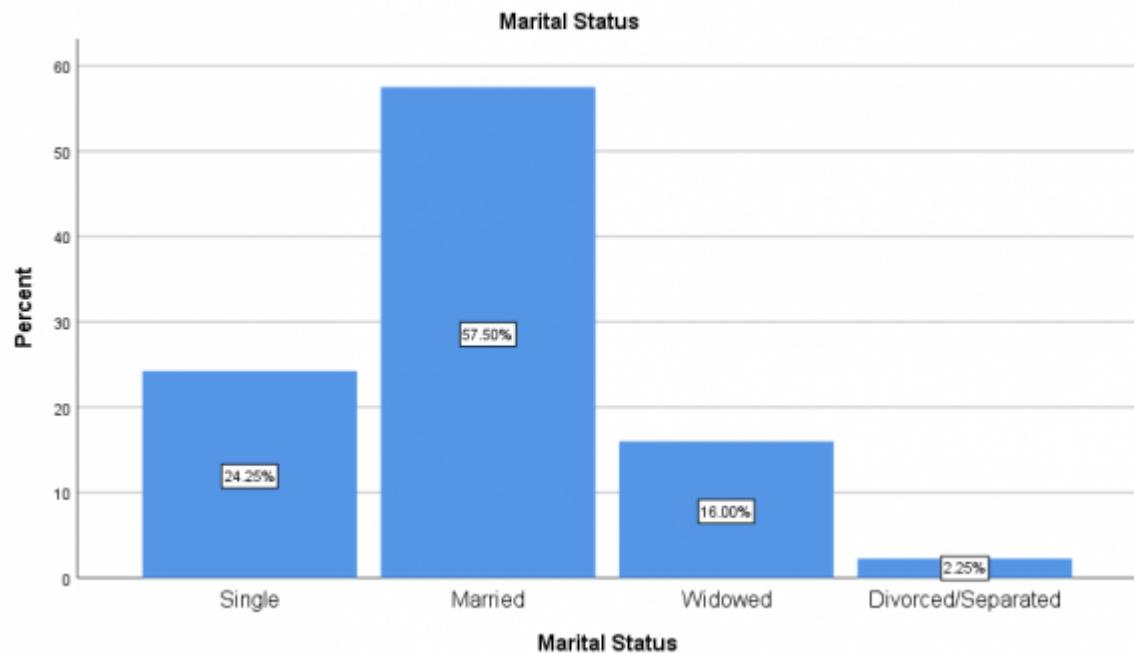


Figure 3:

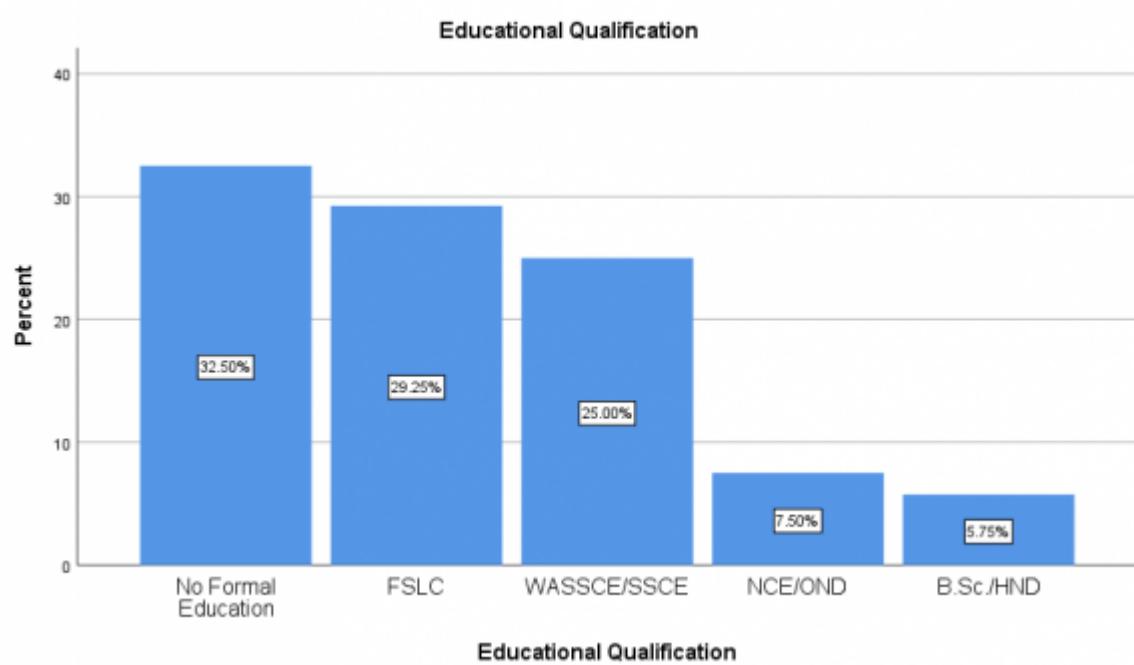


Figure 4: OR

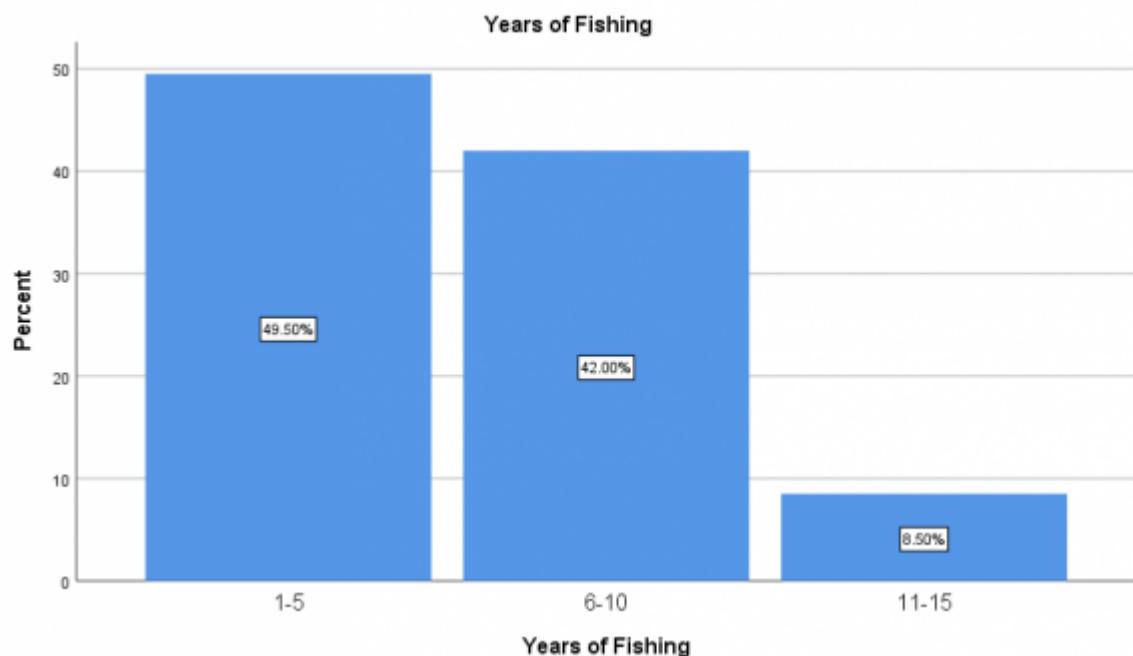
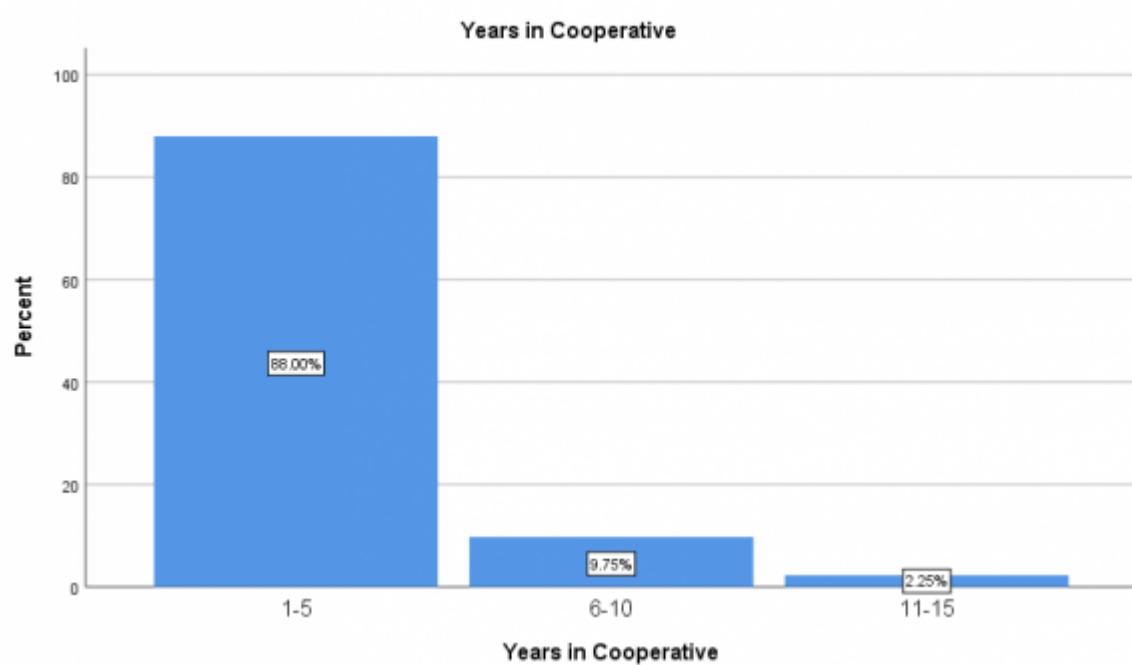
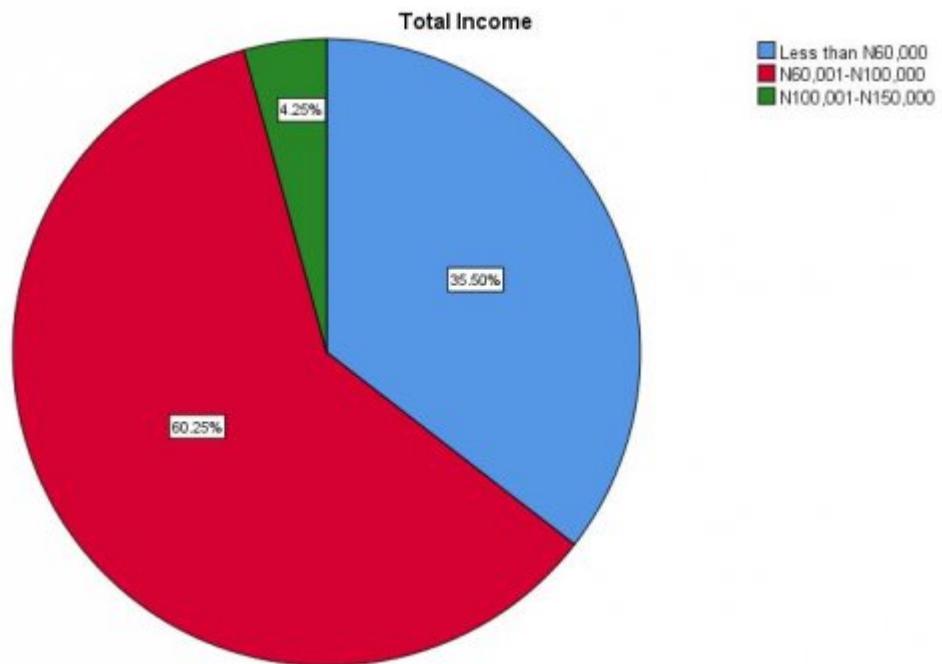




Figure 5: AG=

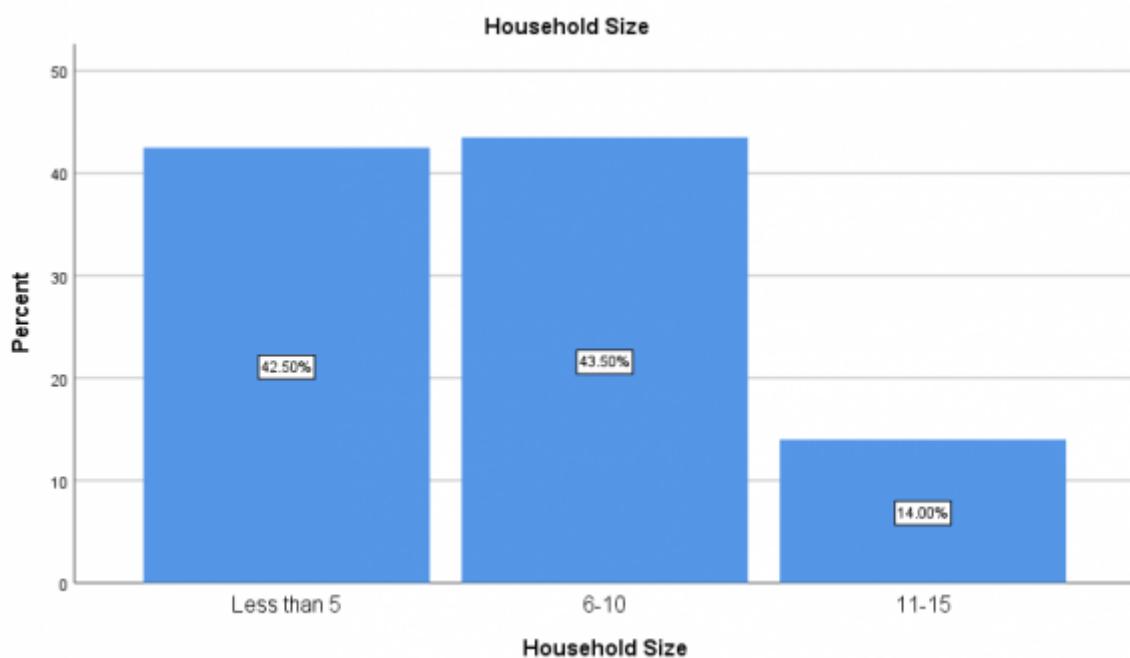

41

Figure 6: Figure 4 . 1 :

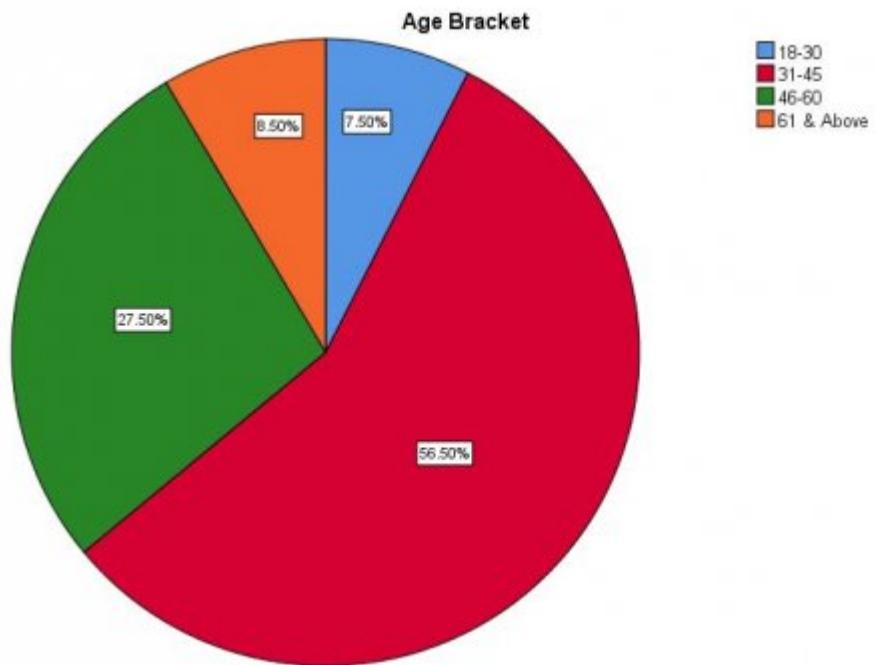

42

Figure 7: Figure 4 . 2 :

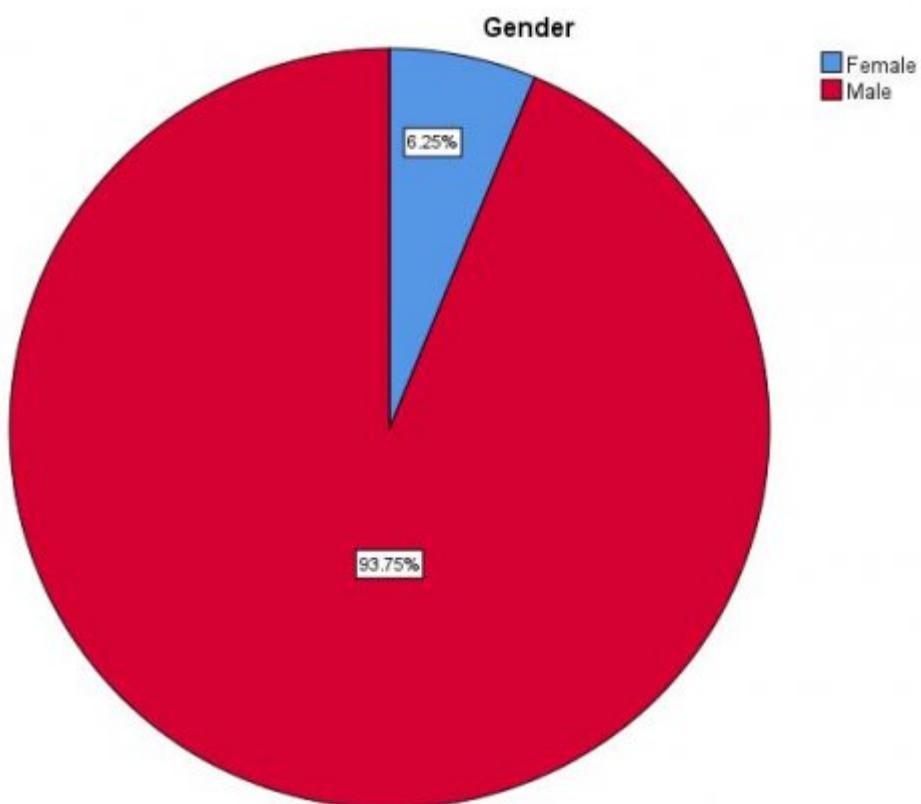

4

Figure 8: Figure 4 .

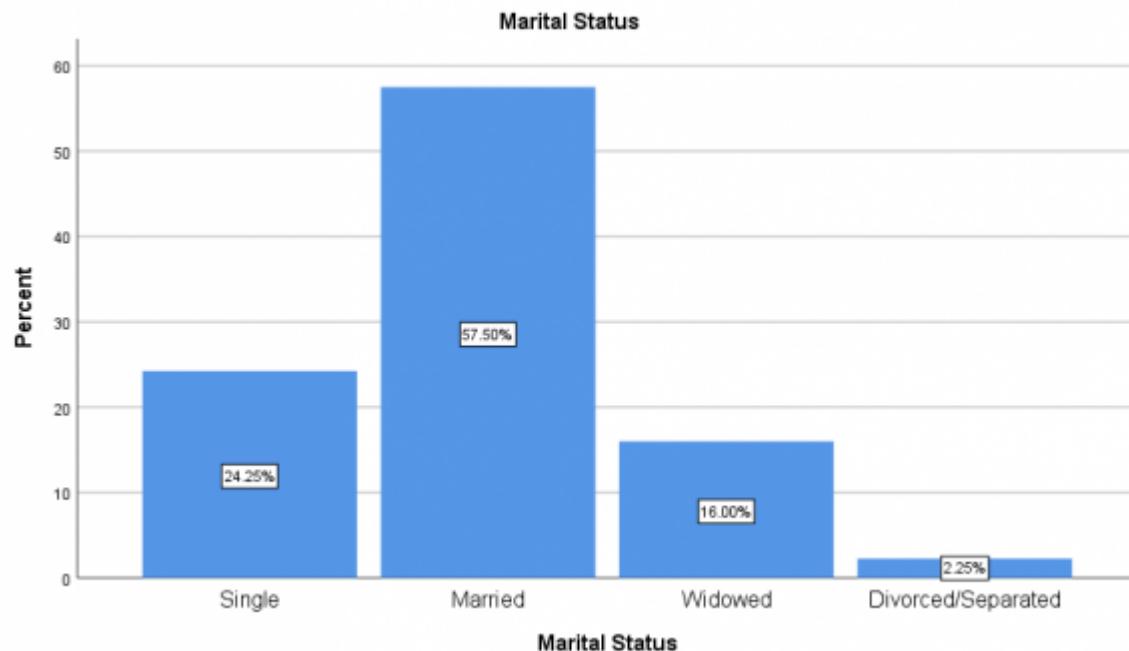

4443

Figure 9: Figure 4 . 4 :Figure 4 . 3 :

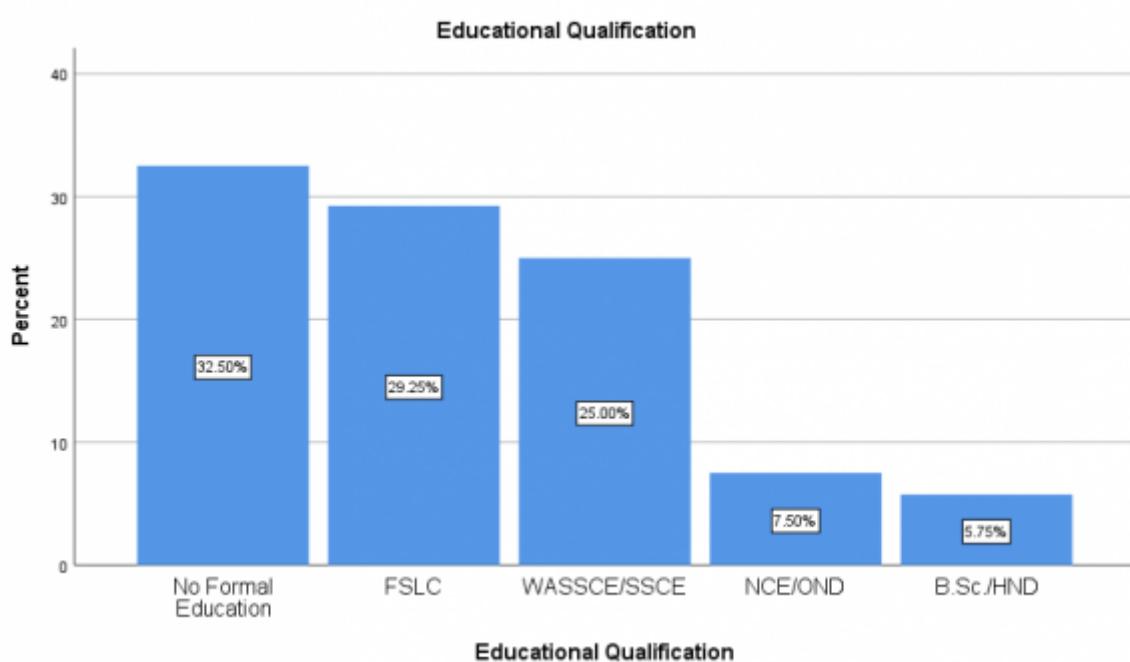

45

Figure 10: Figure 4 . 5 :

46

Figure 11: Figure 4 . 6 :

4

Figure 12: Fig. 4 .

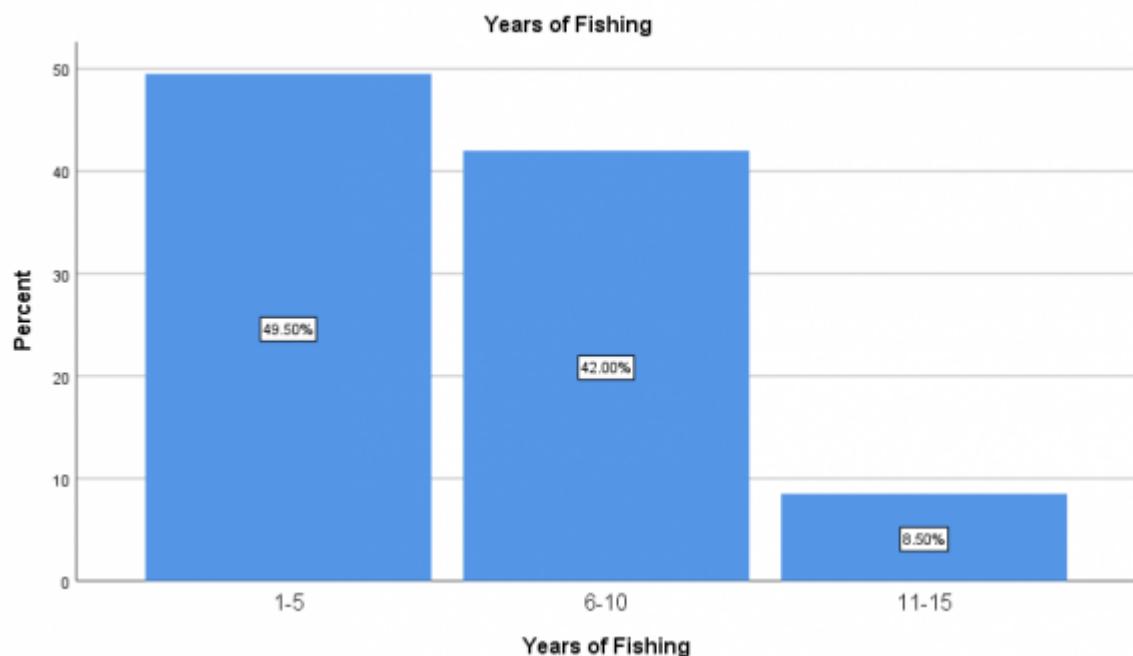


Figure 13:

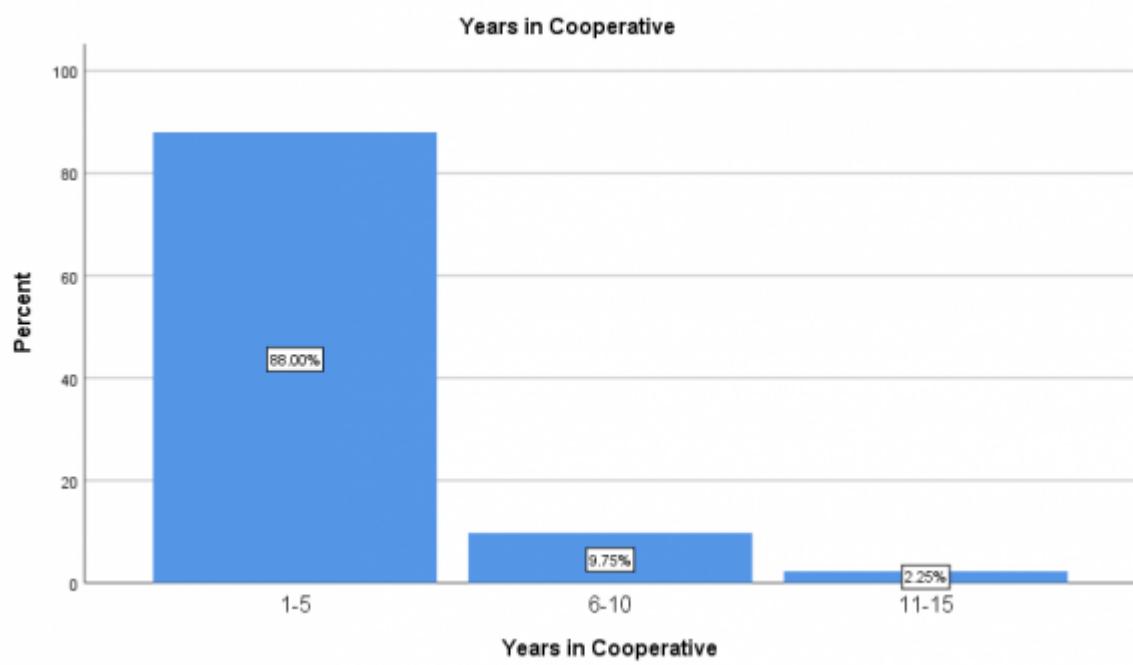
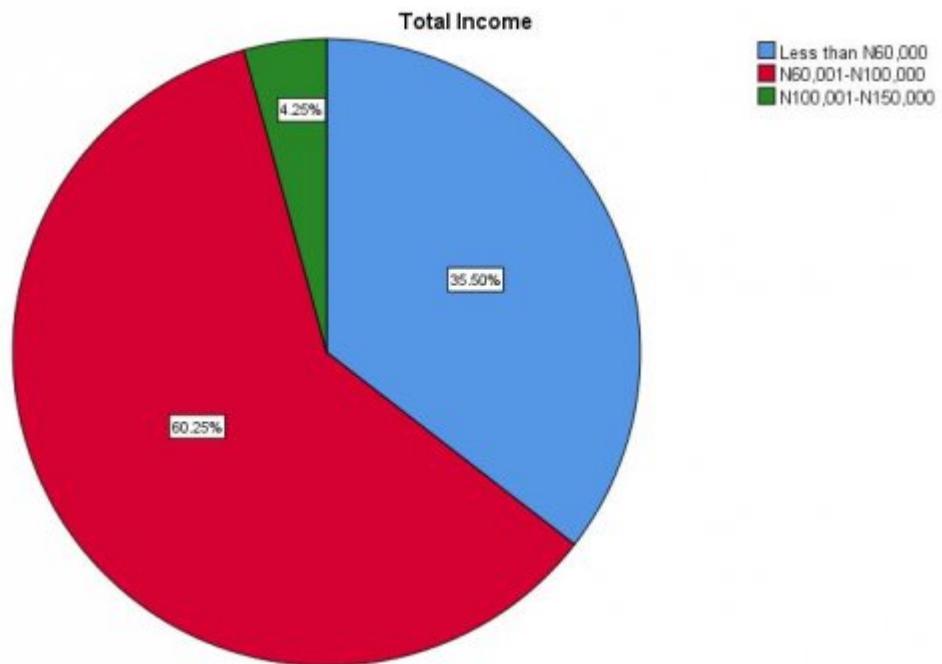
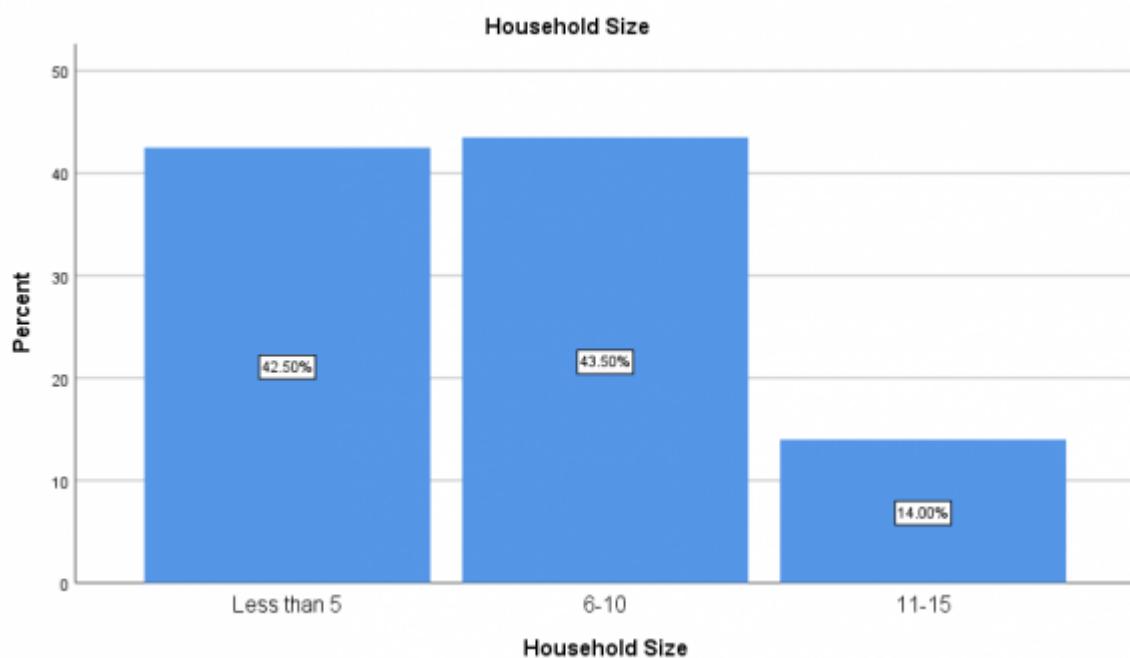




Figure 14:

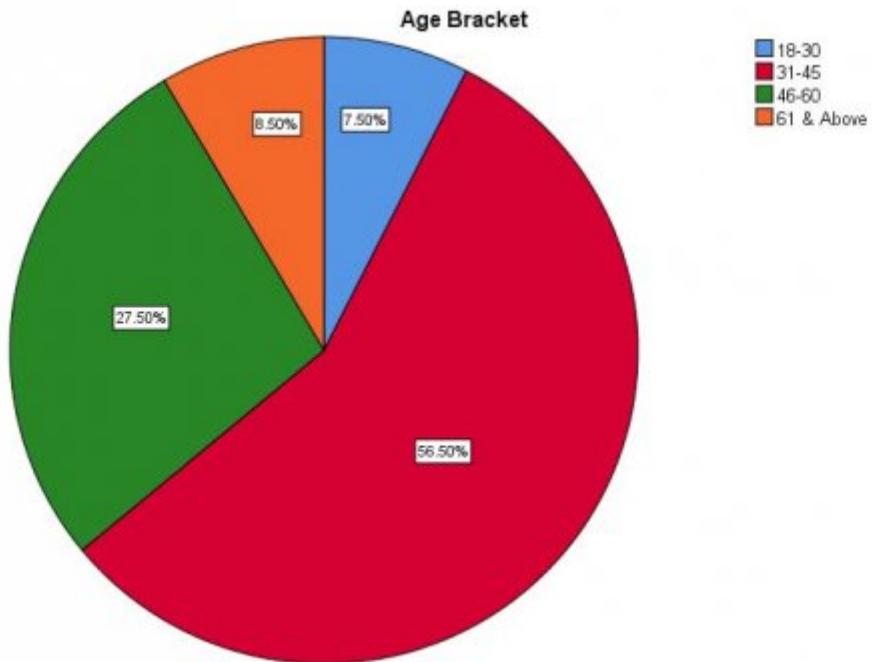

48

Figure 15: Figure 4 . 8 :

47

Figure 16: Figure 4 . 7 :

1

Figure 17: H 1 :

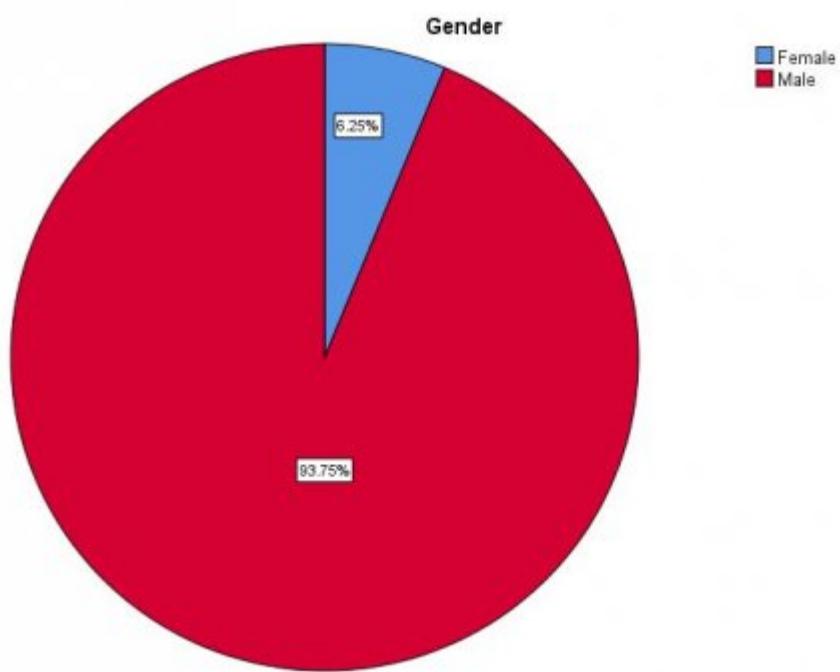


Figure 18:

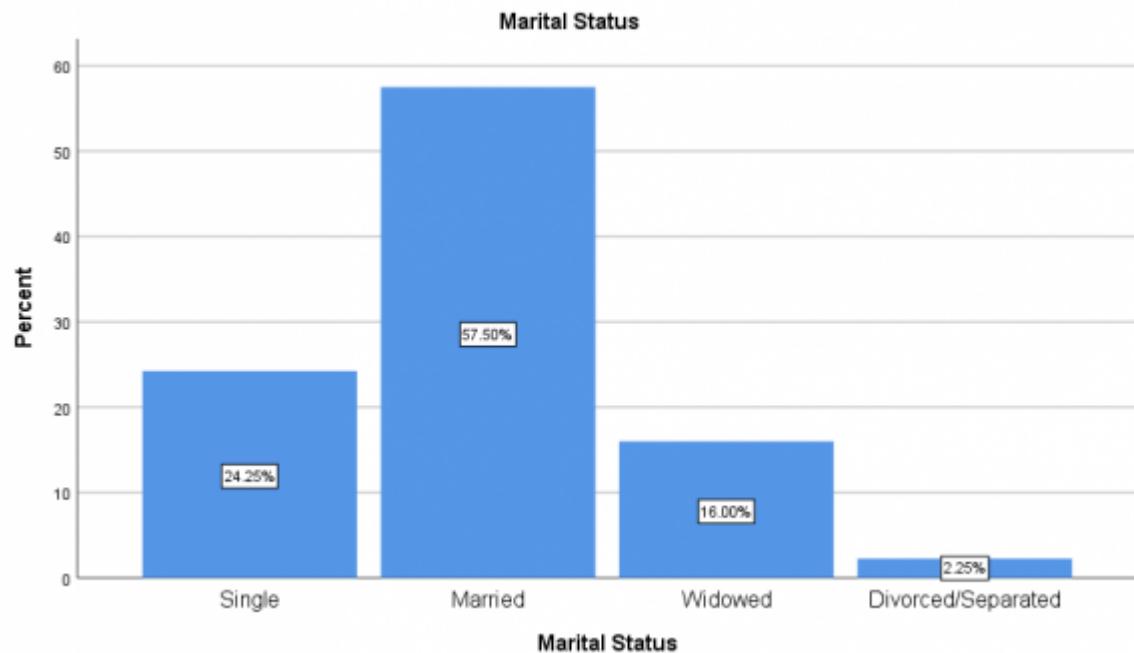
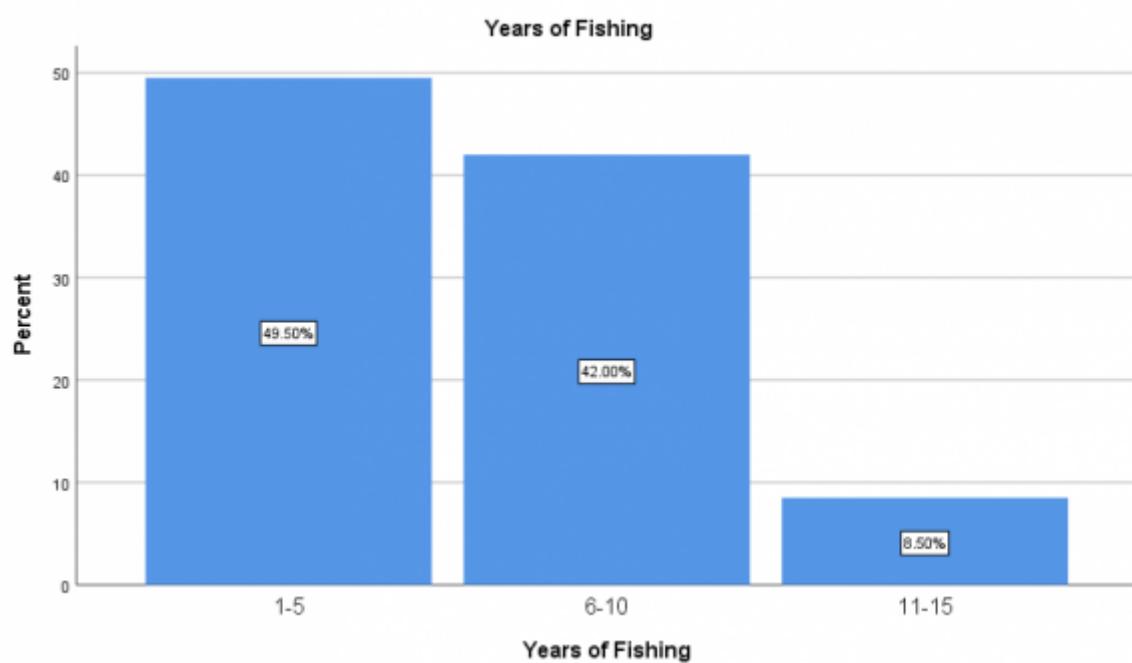
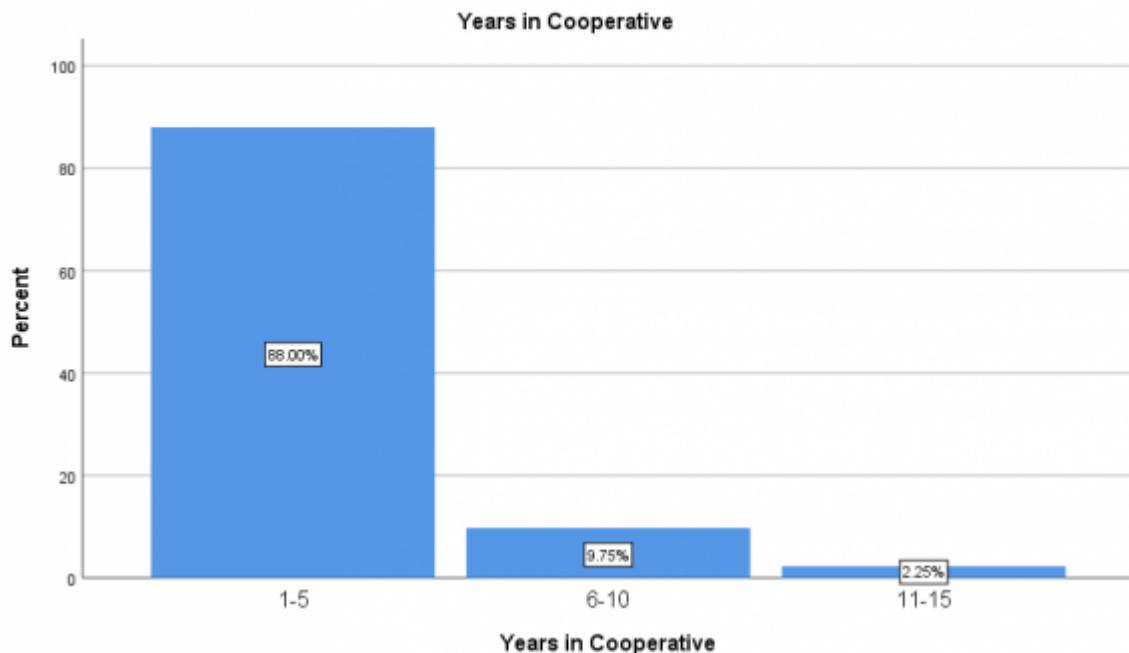




Figure 19:

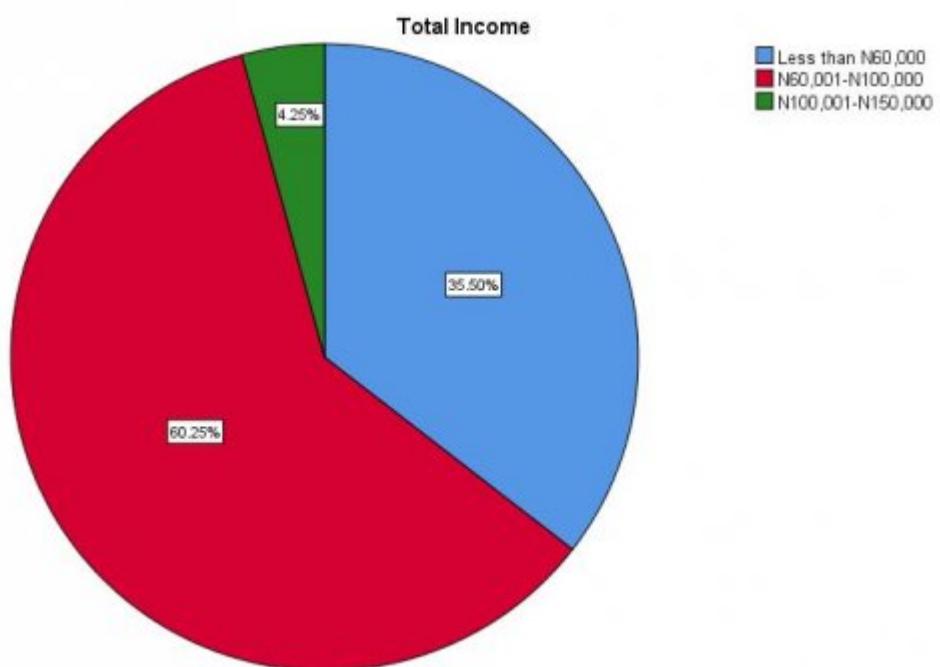

4

Figure 20: Fig. 4 .

42

Figure 21: Figure 4 . 2 :

41

Figure 22: Figure 4 . 1 :

21

S./N.	Author(s)/Date	Purpose of the Study/Location	Method of Data Collection/Instrument		Method of Data Analysis	Findings
			Survey	De-sign/Questionnaire		
1	Elhendy&Alzoom (2001)	To assess the cost of tilapia farming in the central region of Saudi Arabia.	Cost-Profit Optimization Method, Net Profit Analysis and Benefit-Cost Ratio (BCR).			The study showed that the minimum average cost of production occurs for 201 tons of tilapia per year per farm and profit is maximized for a production of 300 tons annually per farm.

Figure 23: Table 2 . 1 :

Figure 24:

3

Cronbach's Alpha	1: Reliability Statistics		N of Items
	Cronbach's Alpha	Based on Standardized Items	
0.848	0.863		32

Source: survey data, 2018.

Figure 25: Table 3 .

41

Model	Coefficients a		Standardized T Coefficients	Sig.
	Unstandardized Coefficients	B Std. Error		
(Constant)	-181735.673	62191.026		-2.922 .004
Age Bracket	6441.454	638.450	.015	10.089 .000
Gender	1798.938	21659.483	.002	.083 .934
1 Educational Qualification	694.378	3481.116	.002 .008	1.868 .064
Years in Cooperative		371.799		.358 .721
		9735.325		
Total Investment	.035	.010	.020	35.867 .000
Total Income	18223.032	1373.671	.030	13.266 .000
Total Revenue (Sales)	.942	.024	.897	39.573 .000

Figure 26: Table 4 . 1 :

The Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria			
Year 2020	72	Model	Coefficients a Unstandardized Coefficients B Std. Error
Volume		(Constant)	
XX Issue		High cost of	
X Version		fishing inputs	
I			
() B			
Global Journal of Management and Business Research	v.		
	1	Lack of sufficient capital Storage problems	-19938.986 -7100.295
		Spoilage of fish	8772.599 21716.166
		Poor catch	-22475.463 16597.594
		Poor sales	-6686.288 2082.166
		Oil/Industrial pollution	-35045.332 2158.999
			-52260.682 2945.772

a. Dependent Variable: Profit Margin
 © 2020 Global Journals

Figure 27: Table 4 . 2 :

Cronbach's Alpha	1: Reliability Statistics Cronbach's Alpha Based on Standardized Items 0.863	N of Items 32
Source: survey data, 2018.		

Figure 28: Table 3 .

41

Model	Coefficients a		Standardized T Coeffi- cients	Sig.
	Unstandardized Coefficients	B	Std. Error	
(Constant)	-181735.673	62191.026		-2.922 .004
Age Bracket	6441.454	638.450	.015	10.089 .000
Gender	1798.938	21659.483	.002	.083 .934
1 Educational Qualifica- tion Years in Coopera- tive	694.378 3481.116	371.799 9735.325	.002 .008	1.868 .064 .358 .721
Total Investment	.035	.010	.020	35.867 .000
Total Income	18223.032	1373.671	.030	13.266 .000
Total Revenue (Sales)	.942	.024	.897	39.573 .000

Figure 29: Table 4 . 1 :

42

Model	Coefficients a		Standardized t Coeffi- cients	Sig.
	Unstandardized Coefficients	B	Std. Error	
(Constant)	1037134.155	223487.712		4.641 .000
High cost of fishing in- puts	-22620.738	1655.644	-.069	-13.663 .000
1 Lack of sufficient capi- tal Storage problems	-19938.986 -7100.295	8772.599 21716.166	-.035 -.016	-2.273 -.327 .039 .744
Spoilage of fish	-22475.463	16597.594	-.068	-1.354 .176
Poor catch	-6686.288	2082.166	-.016	-3.211 .003

Figure 30: Table 4 . 2 :

The Profitability of Fish Production by Co-Operative Society Members in Rivers State, Nigeria																			
40	83	126	169	4	1	4	2	4	66	198	1	406000	3	1402000	100				
212											1			2	664000				
											1			4	2				
											1			2	1				
											0			3	2				

S/n.	41	84	Statistics of Co-Operators Interviewed	Age	Gender	Marital Status	Household Size	3	1
	127	170	213						
	42	85	128	171					
	214	1	43	86					
	129	172	215	2					
	44	87	130	173					
	216	3	45	88					
	131	174	217	4					
	46	89	132	175					
	218								

5	47	90	133	3	1	3	2	1	3	73	1	1	0	1	1	1	2	5220001	1
	176	219									1								
											3								
											3								
											1								

Year	6	7	8	9	48	49	2	4	4	3	2	3	3	2	3	2	1	1	4
2020	50	51	91	92															
Year	93	94	134	135															
2020	136	137	177																
Year	178	179	180																
2020	220	221	222																

234	235	236	322	278	279	280	323	5.	What is your educational qualification?	1	5	3	4	3	2	5	3	4	3	233277				
Glob	238	326	282	B.Sc./HND	[]	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	2
Jour-																								
nal																								
of																								
Man-																								
age-																								
ment																								
and																								
Busi-																								
ness																								
Re-																								
search																								
Vol-																								
ume																								
XX																								
Is-																								
sue																								
X																								
Ver-																								
sion																								
I																								
(
)																								
B																								
126																								
Year																								
2020																								

1709 The Profitability of Fish Production by ??o

1710 [Oguta and State] , Imo Oguta , State . <http://www.academicjournals.org/jdae/PDF/Pdf2010/Mar/Anene%20et%20al.pdf> Nigeria. *J. Dev. Agric. Econ* 2 p. .

1712 [Turk and Fish] , . J Turk , Fish . &Aquat. Sci 19 (4) p. .

1713 [District and County] , Meru District , County . Kenya. *IOSR J. Bus. Manag* p. .

1714 [Raufu et al. ()] , M O Raufu , A A Adepoju , A S Salau , O A Adebiyi . 2009.

1715 [Adeogun et al. ()] , O A Adeogun , T Alimi , R Adeyemo . 2012.

1716 [Fao ()] *A technical guide to support the implementation of the voluntary guidelines on the responsible governance of tenure of land, fisheries, and forests in the context of national food security*, Fao . 2013. Rome: Food and Agriculture Organization of the United Nations.

1719 [Age Bracket, Total Investment, Gender, Years in Cooperative, Educational Qualification, Total Income b. Dependent Variable: Profit Margin', Total Revenue (Sales),

1720 'Age Bracket, Total Investment, Gender, Years in Cooperative, Educational Qualification, Total Income b.

1721 Dependent Variable: Profit Margin', Total Revenue (Sales),

1722 [Inoni ()] 'Allocative efficiency in pond fish production in Delta State, Nigeria: A production function approach'. O E Inoni . http://www.agriculturaits.cz.u.cz/pdf_file *Agric. Tropica Subtropica* 2007. 40 p. .

1724 [Awoyemi and ajiboye ()] 'Analysis of profitability of fish farming among women in Osun State'. T Awoyemi , A &ajiboye . Nigeria. *Journal of Economics and Sustainable Development* 2011. 2 (4) .

1726 [Adewuyi et al. ()] 'Analysis of profitability of fish farming in Ogun State Nigeria'. S A Adewuyi , B B Phillip , I A Ayinde , D &akerele . 31-0-000-10-Web/JHE-31-3-000-10-AbstPDF/JHE -31-3-179-10-1963-Adewuyi-S-A/JHE-31-3-179-10- 1963-Adewuyi-S-A-Tt.pdf. <http://www.krepublishers.com/02-Journals/JHE/JHE- J. Hum. Ecol> 2010. 31 p. .

1730 [Okpeke and akarue ()] 'Analysis of the profitability of fish farming in the Warri South local government area of Delta State'. M Y Okpeke , B O &akarue . Nigeria. *IOSR Journal of Agriculture and Veterinary Science* 2015. 8 (12) p. .

1733 [Annual report and statement of accounts ()] *Annual report and statement of accounts*, 2005. Abuja: Central Bank of Nigeria Publication. Central Bank of Nigeria (CBN

1735 [Olaoye et al. ()] 'Assessment of socioeconomic analysis of fish farming in Oyo State'. O J Olaoye , S S Ashley-Dejo , E O Fakoya , N B Ikewinwe , W O Alegbeleye , F O Ashaolu , O A &adelaja . Nigeria. *Global Journal of Science Frontier Research Agriculture and Veterinary* 2013. (9) p. 13.

1738 [Olomola ()] 'Capture fisheries and aquaculture in Nigeria: A comparative economic analysis'. A Olomola . *Issues in African Rural Social Science Series* 1991.

1740 [Mcclurg ()] 'Conceptual framework for the identification and assessment of potential fisheries investments'. T Mcclurg . *Toroa Strategies: Consultancy report prepared for the World Bank*, 2014.

1742 [Teh and Sumaila ()] 'Contribution of marine fisheries to worldwide employment'. L C L Teh , U R Sumaila . *Fish and Fisheries* 2013. 14 p. .

1744 [El-Naggar et al. (2008)] 'Economic analysis of fish farming in Behera Governorate of Egypt'. G El-Naggar , A Nasr-Alla , R O Kareem . *Proceedings of 8th International Symposium on Tilapia in Aquaculture*, H Elghobashy, K Fitzsimmons, A S Diab (ed.) (8th International Symposium on Tilapia in AquacultureCairo, Egypt) 2008. Oct 2008. 1 p. . (From the pharaohs to the future)

1748 [Busari ()] 'Economic Analysis of Homestead Fish Farming in Olorunda Local Government Area'. A O Busari . Nigerian *Journal of Fisheries and Aquaculture* 2018. 6 (2) p. .

1750 [Tunde et al. ()] 'Economic analyze of costs and return of fish farming in Saki East local government area of Oyo State'. A B Tunde , M P Kuton , A A Oladipo , L H Olasunkanmi . Nigeria. *Journal of Aquaculture Research & Development* 2015. 6 (2) .

1753 [Ajao ()] *Economic of fish farming in Oyo state, Nigeria. An Unpublished Ph.D. Dissertation, submitted to the Department of Agricultural Economics*, A O Ajao . 2006. Nigeria. Obafemi Awolowo University, Ile-Ife

1755 [Olagunju et al. ()] 'Economic viability of catfish production in Oyo State'. F I Olagunju , I O Adesiyani , A A Ezekiel . Nigeria. *Journal of Human Ecology* 2007. 21 (2) p. .

1757 [Yesuf et al. ()] 'Economics of fish farming in Ibadan Metropolis'. S A Yesuf , A N Ashiru , S A &adewuyi . *Tropical Journal of Animal Science* 2002. 5 (2) p. .

1759 [Elhendy and Alzoom ()] 'Economics of fish farming in Saudi Arabia: Analysis of Costs of Tilapia production'. A M Elhendy , A A Alzoom . *Aquaculture and Economics Management* 2001. 5 (3-4) p. .

1761 [Kudi et al. ()] 'Economics of fish production in Kaduna State Nigeria'. T M Kudi , P F Bako , T K Atala . *ARPJ Journal of Agricultural and Biological Science* 2008. 3 (5 & 6) p. .

1763 [Iruo et al. ()] *Economics of smallholder fish farming to poverty alleviation in the Niger Delta region of Nigeria*,
1764 F A Iruo , R U Onyeneke , C C Eze , C Uwadoka , C O Igberi . 2018.

1765 [Fao (2005)] Fao . No.787. *FAO/World fish center workshop on interdisciplinary approaches to the assessment of*
1766 *small-scale fisheries*, (Rome) 2005. September 2005. FAO. p. . (FAO Fisheries Report)

1767 [Fisheries: Country profile of Nigeria FIDCP/NIR Rev ()] 'Fisheries: Country profile of Nigeria'. *FIDCP/NIR*
1768 *Rev* 1989. 4 p. 9. (FAO)

1769 [Food and Agriculture Organization Fishery and aquaculture country profiles Nigeria. Fisheries and Aquaculture Department ()]
1770 'Food and Agriculture Organization'. http://www.fao.org/fishery/countrysector/FI-CP_NG/3/
1771 *en Fishery and aquaculture country profiles Nigeria. Fisheries and Aquaculture Department*, 2011.

1772 [Fao ()] *Future challenges in world fisheries and aquaculture*, Fao . 1999. (23rd Session of the Committee)

1773 [Hidden harvest: The global contribution of capture fisheries ()] *Hidden harvest: The global contribution of*
1774 *capture fisheries*, 2012. Washington, DC. World Bank. Washington DC.

1775 [Food and Agriculture Organization (ed.) ()] *Increasing the contribution of small-scale fisheries to poverty*
1776 *alleviation and food security. 1st Edn.*, Food and Agriculture Organization, Food and Agriculture Organization
1777 (ed.) 2005. Rome. p. 79.

1778 [Samson ()] *Introduction to agriculture and fisheries management in Nigeria*, Y A Samson . 1997. Abeokuta,
1779 Nigeria: Goal Education Publishing. p. .

1780 [Gien ()] 'Land and sea connection: the east coast fishery closure, unemployment, and health'. L T Gien .
1781 *Canadian Journal of Public Health* 2000. 91 p. .

1782 [National Population Commission (N.P.C) ()] 'National population census 2006 provisional results'. <https://www.population.gov.ng> Abuja: Nigeria National Population Commission (N.P.C (ed.) 2006.

1783 [Agu-Aguiyi et al. ()] 'Performance of fishery cooperative societies in Rivers State Nigeria'. F N Agu-Aguiyi , C
1784 C Onyia , E E Umebali , S M D G George . *International Journal of Community and Cooperative Studies*
1785 2018. 6 (1) p. .

1786 [Tokrisna et al. ()] 'Production technology and economic efficiency of the Thai Coastal fishery'. R Tokrisna , T
1787 Panayotou , K Adulavidhaya . *Small-scale Fisheries in Asia: Socio-Economic Analysis and Policy. IDRC.*
1788 229e. International Development Research Center, Theodore Panayotou (ed.) (Ottawa, Canada) 1985.

1789 [Omobepade et al. ()] 'Profitability analysis of aquaculture in Ekiti State'. B P Omobepade , O T Adebayo , T
1790 T Amos , B C Adedokun4 . *Nigeria. Nigerian Journal of Agriculture, Food and Environment* 2015. 11 (1) p. .

1791 [Yisa et al. ()] 'Profitability analysis of catfish farming in Suleja local government area of Niger State'. E S Yisa
1792 , C O Adebayo , U S Mohammed , P U Anaweta . *Nigeria. Journal of Agriculture and Food Sciences* 2015.
1793 (1) p. 13.

1794 [Issa et al. ()] 'Profitability analysis of small-scale catfish farming in Kaduna State'. F O Issa , M O Abdulazeez
1795 , D M Kezi , J S Dare , R Umar . *Nigeria. Journal of Agricultural Extension and Rural Development* 2014. 6
1796 (8) p. .

1797 [Dambatta et al. ()] 'Profitability and constraints of three major fisheries enterprises in Kano State'. M A
1798 Dambatta , O A Sogbesan , A A Tafida , M A Haruna , A U Fagge . *Nigeria. Global Journal of Science*
1799 *Frontier Research: Interdisciplinary* 2016. 16 (1) p. .

1800 [Iheke and Nwagbara ()] 'Profitability and viability of catfish enterprises in the Abia state of Nigeria'. O R Iheke
1801 , C Nwagbara . *Journal of Agriculture and Social Research* 2014. 14 (1) p. .

1802 [George ()] *Profitability of Fish Production Among Members of Cooperative Societies In Rivers State, Nigeria*,
1803 *an unpublished PhD Dissertation submitted to the Department of Cooperative Economics and Management*,
1804 *Faculty of Management Sciences, and the Postgraduate School*, S M D George . 2020. Awka. Nnamdi Azikiwe
1805 University

1806 [Aheto et al. ()] 'Profitability of small-scale fisheries in Elmina'. D Aheto , N K Asare , B Quaynor , E Y
1807 Tenkorang , C Asare , I Okyere . *Ghana. Sustainability* 2012. 4 (1) p. .

1808 [Realizing the promise and potential of African agriculture Royal Netherlands Academy of Arts and Sciences ()]
1809 'Realizing the promise and potential of African agriculture'. *Royal Netherlands Academy of Arts and Sciences*
1810 2004. p. 82. (Inter Academy Council (IAC))

1811 [Fao ()] *Review of the state of world agriculture. FAO Fisheries Circular No 886 Revision 2 FAO Rome*, Fao .
1812 2003. 95 p. pp.

1813 [Islam et al. ()] 'Rice cum fish farming in selected areas of Nymensingh District'. N S Islam , M Murshed , M
1814 Moniruzzaman , B N Abdul . *Journal of Biological Sciences* 2002. 2 (10) p. .

1815 [Rivers State Ministry of Agriculture and the State's Department of Cooperative Societies ()] *Rivers State*
1816 *Ministry of Agriculture and the State's Department of Cooperative Societies*, 2018.

1817

1818 [Nieves et al. ()] 'Socio-economic conditions, the status of fisheries and agriculture and the adaptive capacities of
1819 households and communities in San Miguel Island, Albay, the Philippines in the Kuroshio sphere of influence'.
1820 P M Nieves , N R Pelea , R G Bradecina , M A Pereyra , Y Morooka , T Shinbo , M C P Rivero . *Kuroshio*
1821 *Science* 2009. 3 (1) p. .

1822 [Ezeh and Anya ()] 'Socioeconomic and profitability of pond catfish production in Abia State'. C I Ezeh , Anene
1823 A Anya , IP . *Nigeria. J. Food and Fibre Prod* 2008. 9 (1) p. .

1824 [Gill et al. ()] 'Socioeconomic profile of fisheries in the Grenadine Islands'. D Gill , P Mcconney , R Mahon .
1825 *CERMES Technical Report No* 2007. 11 p. .

1826 [Costello et al. ()] 'Status and solutions for the world's Unassessed fisheries'. C Costello , D Ovando , R Hilborn
1827 , S Gaines , O Deschenes , S Lester . *Science* 2012. 3 (38) p. .

1828 [Status, cost, and profitability of aquaculture enterprises in Nigeria: Implications for food security *International Journal of Agricu*
1829 'Status, cost, and profitability of aquaculture enterprises in Nigeria: Implications for food security'.
1830 *International Journal of Agricultural Sciences* 2 (1) p. .

1831 [Amire ()] *The challenges of piracy in the marine sector of capture fisheries*, A Amire . 2008. Nigeria. Lead.

1832 [Lassen ()] 'The future fisheries, Constraints, possibilities, and sustainability: Ecological impact from fisheries,
1833 the political environment and how this may affect the future of capture fisheries'. H Lassen . *J. Northw. Atl.*
1834 *Fish. Sci* 1998. 23 p. .

1835 [Pauly et al. ()] 'The Millennium Ecosystem Assessment Series'. D Pauly , J Alder , A Bakun , S Heileman , K
1836 Kock , P Mace , B Worm . *Ecosystems and Human Wellbeing: Current States and Trends*, 2005. Island Press.
1837 1. (Chapter 18: Marine fisheries systems)

1838 [Adewumi et al. ()] 'The profitability analysis of artisanal fishing in the Asa river of Kwara state'. M Adewumi ,
1839 O Ayinde , A Adenuga , S Zacchaeus . *Nigeria International Journal of Development and Sustainability* 2012.
1840 1 (3) p. .

1841 [Fao ()] *the state of world fisheries and aquaculture*, Fao . 2014. Rome: Food and Agriculture Organization of
1842 the United Nations.