

1 Herd Bias in Indian Stock Market under Extreme Market 2 Conditions

3 Nithin Jose¹

4 ¹ St. Joseph's College(Autonomous), Devagiri, Kozhikode

5 *Received: 10 February 2021 Accepted: 4 March 2021 Published: 15 March 2021*

6

7 **Abstract**

8 Behavioural Finance is an area that needs to be studied within the context of the Indian stock
9 market to assist investors in making rational investment decisions. This study examines the
10 existence of herding behaviour in the Indian stock market considering various determinants of
11 herd formation such as rising and declining market conditions and extreme market situations.
12 The study is based on 46 companies selected from NSE Nifty 50 index based on their trading
13 period. The methodology applied to validate the presence of herd formation is Cross-Sectional
14 Absolute Deviation (CSAD) method.

15

16 **Index terms**— herding behaviour, market efficiency, cross-sectional absolute deviation method (CSAD).

17 **1 Introduction**

18 Behavioural finance is a field of study that helps in analyzing the influence of psychology on the behaviour of financial
19 market investors and the subsequent effect on stock prices. It explains various anomalies in the capital market and
20 also tries to identify why people make certain investment decisions by studying their biases. One such anomaly
21 is herding. Herd instinct in finance is the phenomenon where the investors tend to mimic the actions of other
22 market participants. Herding is a behavioural bias that arises when individual investors suppress their own
23 emotions, beliefs and private information and thereby follow the collective action of the market while making
24 investment decisions. Social psychologists believe that investors herd to feel confident about their investment
25 decisions when they encounter uncertainty and ambiguous information from the market. Thus, they follow the
26 direction of others who they believe are better informed and possess information that is unavailable in the market.
27 Therefore, herding behaviour gives an indication of market inefficiency because investors need not be necessarily
28 rational, rather they abide by the decisions of other market participants thinking that they possess more reliable
29 information. Thus, in a market where herding prevails, the Efficient Market Hypothesis (EMH) is said to be
30 violated, which is a theory based on the assumption that all investors are rational, possess the same set of
31 information, and stocks always trade at their true value on the stock exchanges.

32 Herding behavior can be either irrational or rational. Irrational in the sense, the investors simply ignore their
33 own beliefs and information and blindly follow other's investment decisions to reduce uncertainty and avoid the
34 fear of making a wrong decision. On the other hand, it is said to be a rational behaviour when one herd to
35 protect his reputation. This occurs commonly among professional fund managers because their performance is
36 evaluated based on their decisions. So, they are tempted to ignore their analysis and follow the decisions of other
37 managers who might have access to more reliable information or possess better decision-making skills.

38 This research is an attempt to study herding behaviour in the Indian stock market under different market
39 conditions.

40 **2 II.**

41 **3 Literature Review**

42 A large number of studies have been conducted to identify the evidence of herding in international markets.
43 Herding is linked with market inefficiency, indicating the existence of herding asymmetry in emerging markets.
44 Christie & Huang (1995) adopted the cross-sectional standard deviation method to investigate herding behaviour
45 and found that dispersions increase significantly during periods of large market movements indicating evidence
46 against the presence of herding in developed US markets. Cheng, Cheng, and Khorana (2000) used the Cross-
47 sectional Absolute Deviation of returns (CSAD), a modification of Christie & Huang's (1995)'s model for detecting
48 herd formation in different international markets such as the US, Hong Kong, Japan, South Korea, and Taiwan.
49 The empirical test results indicate that during periods of extreme price movements, equity return dispersions for
50 the US, Hong Kong, and Japan tend to increase, providing evidence against herd behaviour. Still, in the case of
51 South Korea and Taiwan, the evidence is in favour of herding. ??hang et al. (1995). Daily as well as monthly
52 data have been considered for the same. The result indicates that herd behaviour is not present in the Indian
53 stock market. Poshakwale & Mandal (2014) investigated herd behaviour in the emerging Indian stock market
54 using the daily data of the S&P CNX Nifty 50 index of the National Stock Exchange throughout 1997-2012. The
55 study confirmed that the investors in the Indian market show significant herding behaviour and are persistent in
56 both bull and bear markets, and seem to increase in bear market conditions. Yao, Ma, & He (2014) opined that,
57 in Chinese markets, more herding was detected during the period of the higher trading volume.

58 Dr Ashish Kumar, Ms Bharti & Dr Sanchita Bansal (2016) analysed the existence of herding behaviour in the
59 Indian stock market using the daily closing prices of NSE's benchmark index Nifty and thirty-six companies that
60 are listed in NSE for a period commencing from January 1, 2008, to December 31, 2015. The empirical results
61 based on Chang et al. (2000) model confirm no herding in the Indian stock market for bull and bear market and
62 also during the extreme price movements in the market, indicating that the investors tend to make investment
63 decisions of their own and do not imitate the investment behaviour of other fellow investors.

64 Batchu, Satish & Dr Padmasree K (2018) examined herding behaviour in the Indian stock market with a sample
65 of firms listed on the National Stock Exchange of India during the year from 2003 -2017. CSAD methodology was
66 used to study the effect of the global financial crisis on herding behaviour. The study found no herd formation
67 during the pre-financial crisis period, crisis period, and post-financial crisis period and the market is in arising
68 and declining state, but the volatility of the stock is high. Babu J, James V, & Anooja S (2018), in their study,
69 concluded that investors in the Indian stock market do not exhibit any kind of herding activity during rising
70 and declining market conditions. At the same time, Kumar & Sharma (2018) reported weak evidence of herding
71 during different market conditions.

72 **4 III.**

73 **5 Data and Methodology a) Research Data**

74 The data used for the study include the closing prices of the Nifty 50 index and closing prices of shares of 46
75 selected companies for 2011-2019. Also, to study the effect of trading, volume on herding behaviour, volume data
76 for the period of 2013-2019 has been collected. The empirical study on herding behaviour with different data
77 frequency provides mixed results and thereby felt to use daily data, will be helpful to capture the short-term
78 herding behaviour prevailing in the market. In addition to this, many studies like Christie and Huang (1995),
79 Henker, and et al. the Shanghai and Shenzhen A-share markets that are dominated by domestic individual
80 investors and also within both B-share markets, in which foreign institutional investors are the main participants.
81 Investor herding is witnessed during periods of both a bull market and a bear market. Still, during times of rising
82 markets, high trading volume, and high volatility, herding behaviour by A-share investors in the Shanghai market
83 is more pronounced, while no asymmetry is apparent in the B-share market.

84 **6 ???**

85 and Tang (2009), Zhou and Lai (2009) suggested that since herding is a short-lived phenomenon, high-frequency
86 data would provide more accurate results.

87 **7 b) Research Methodology i. Unit Root Test (Stationarity
88 Test)**

89 Unit root examines the stationarity of data using an autoregressive model. There will be serious mistakes in the
90 inferences if we use non-stationarity data for the analysis. Brooks (2008) defined a stationary series as "one with
91 a constant mean, constant variance and constant auto covariances for each lag". It can be explained as, a series
92 is said to be stationary if it has a time-independent mean, variance, and autocorrelation, which are consistent
93 over time. In this study, the null hypothesis is set as CSAD has a unit root. If the null hypothesis is accepted, it
94 means that the series is nonstationary. The Augmented Dickey-Fuller test (ADF test) is the unit root test used
95 in this study for testing the stationarity of data.

96 8 ii. Cross Sectional Absolute Deviation (CSAD) Model

97 Christie & Huang (1995) suggested the first established methodology to study herd formation in the stock market.
98 They used the CSSD (Cross-Sectional Standard Deviation) model to test the presence of herding in the market.
99 Since this model was influenced by outliers and gave biased results, Chang et al (2000) suggested modified
100 methodology which was CSAD (Cross-Sectional Absolute Deviation). CSAD can be explained as the absolute
101 average of the aggregate difference between the expected return of individual securities and market return. The
102 study employs the methodology suggested by Chang et al. (2000) of Cross-Sectional Absolute Deviation (CSAD)
103 to test the presence of herding behaviour in the Indian stock market.

104 According to CSAD Approach, when the investors tend to herd in the stock market, the absolute dispersion
105 between the market return and the individual stock return decreases or increases at a decreasing rate. Thus, the
106 individual stock returns tend to cluster around the overall market return resulting in lesser dispersion. Chang et
107 al. (2000) proposed that the relationship between market return and CSAD should be negative and non-linear.
108 The CSAD is calculated using the following equation:
109
$$\text{Eq (1)} \quad \text{CSAD} = \sqrt{\frac{1}{N} \sum_{i=1}^N |R_i - \bar{R}|^2}$$

110 Where N is the number of securities, R_i is the individual stock return on firm i at time t, \bar{R} is the average return of the equal-weighted market portfolio at time t, α_1 is the coefficient of $|R_i - \bar{R}|$, α_2 is the square of $|R_i - \bar{R}|$ and α_2 is the coefficient of $|R_i - \bar{R}|^2$. In a rational market, the relationship
111 between individual securities return and market return is positive and linear. If the investors exhibit herding
112 behaviour the difference between individual securities return and market return will decrease or may increase at
113 a decreasing rate. This indicates the violation of a positive and linear connection between return dispersion and
114 market return. Therefore, in Eq 2, if coefficient is negative, there exists herding behaviour.

115 The daily closing prices of the Nifty 50 index and 46 selected companies are converted into a log form, to
116 smoothen the data, to enable the use of parametric statistical tools. Using the log values of closing prices, log
117 returns are computed using the following equations.

121 9 $\text{CSAD} = [\log(P_t) - \log(P_{t-1})] \times 100$

122 Eq(3)

123 Where P_t is the price of the stock at time t, and P_{t-1} is the price at time t-1 and t stands for the specific day.

125 10 Herding behaviour during increasing and decreasing markets:

127 $\text{Herding}_t = \alpha_1 + \alpha_2 \text{Market}_{t-1} + \alpha_3 \text{Market}_t + \alpha_4 \text{Market}_{t+1} + \alpha_5 \text{Market}_{t+2}$
128 $\text{Market}_t < 0 \text{ Eq (4)} \quad \text{Herding}_t = \alpha_1 + \alpha_2 \text{Market}_{t-1} + \alpha_3 \text{Market}_t + \alpha_4 \text{Market}_{t+1} + \alpha_5 \text{Market}_{t+2}$
129 $\text{Market}_t > 0 \text{ Eq (5)}$

130 Here the level of herding is examined by introducing dummy variables Market_{t-1} and Market_t , where $\text{Market}_{t-1} = 1$
131 if the market returns on day t depict a decreasing market condition and equal to zero otherwise, and $\text{Market}_t = 1$
132 if the market return on day t depicts an increasing market condition and equal to zero otherwise.

133 11 c) Herding Behaviour During Extreme Market Conditions

134 It is believed that herding behaviour is more likely to exist in extreme up or down market conditions due to
135 psychological reasons. Christie & Huang (1995) employed 1% and 5% levels of significance as the cutoff points
136 to determine extreme up and down returns in their study. In this study, we employ a 5% level of significance to
137 determine the extreme up and down market conditions. The extreme up market is defined as 5% of the upper
138 tail of the market returns distribution, whereas the extreme down market is defined as 5% of the lower tail of
139 the market returns distribution. Where Market_{t-1} is the coefficient of the equally weighted market portfolio
140 return at time t when the market return lies in the extreme lower tail of the distribution, Market_t is the
141 equally weighted market portfolio return at time t when the market return falls in the extreme lower tail of the
142 distribution, the case for an extreme up market condition is similar.

143 12 Herding behavior under extreme market situations is computed using the following equation:

145 13 d) Herding Behaviour under high and low trading volume state

147 In this study, we also check for herding behaviour during high and low volume days. Previous studies suggest
148 that trading volume varies according to the information in the market and subsequent revision by investors.

149 Herding behaviour under high and low volume state is computed using the following equation:
150
$$\text{Herding}_t = \alpha_1 \text{Volume}_{t-1} + \alpha_2 \text{Volume}_t + \alpha_3 \text{Volume}_{t+1} + \alpha_4 \text{Volume}_{t+2}$$

16 CONCLUSION

151 $(\text{??} \text{ ??} \text{ ??} \text{ ??????} \delta \text{ ???"} \delta \text{ ???"}) \text{ 2} + \text{ ??} \text{ ??} \text{ Eq(8) ?????? } \text{ ??} \text{ ??????} = \text{ ?} + \text{ ??} \text{ 1 ??????} \hat{a} \text{?"} \text{ ??} \text{ ??} \text{ ??} \text{ ??}$
152 $\text{?????} \hat{a} \text{?"} \text{ ??} \text{ 2 ??????} (\text{??} \text{ ??} \text{ ??} \text{ ??????}) \text{ 2} + \text{ ??} \text{ ??} \text{ Eq(9)}$

153 Where $\text{??} \text{ ??} \text{ ??} \text{ ???"} \delta \text{ ???"}$ is the coefficient of the equally weighted market portfolio return at time t
154 where the market is in high volume state, $\text{??} \text{ ??} \text{ ??} \text{ ???"} \delta \text{ ???"}$ is the equally weighted market portfolio
155 return at time t when the market is in high volume state; the case is similar for a low volume state.

156 IV.

157 14 Results

158 Table ???.1: Descriptive Statistics of Cross-Sectional Absolute Deviation (CSAD) Table ???.1 explains the
159 descriptive statistics of the variables under study. The data is for the period 01-01-2010 to 11-11-2019 and
160 the table shows the details of the daily data. Table ???.1 shows that the average CSAD for the whole study period
161 is 0.529732, and the standard deviation is 0.143436. The standard deviation will be higher if the market had
162 a higher level of crosssectional variation due to unexpected news or shocks and explain higher volatility in the
163 market and this can also be attributed to higher information asymmetry existed in the market.

164 Skewness helps to assess the level of asymmetry in the probability distribution. Since the value of skewness of
165 CSAD here is 1.531356, the series is said to be positively skewed. Also, the value of Kurtosis is 8.280507 (which is
166 more than 3), and thus, the series depicts leptokurtic features. Jarque-Bera (JB) is a test that is used to test the
167 normality of the distribution. In the study, the value of Jarque-Bera (JB) is so high for CSAD (i.e., 3729. 501),
168 indicating that stock returns differ significantly from the normal distribution. The above table analyses the level
169 of herding in different NSE stocks from 1 st January 2010 to 11 th November 2019. As per the CSAD model,
170 herding will be significant only when the $\text{??} \text{ 1}$ coefficient becomes negative and significant. The result of regression
171 analysis shows that the $\text{??} \text{ 2}$ coefficient is positive, indicating that there is no significant herding behaviour in
172 the Indian stock market. The relatively lower incidence of herding in the Indian stock market may be due to the
173 large institutional investors in the Indian market. They are believed to have better information sources, more
174 skilled traders and are therefore less likely to herd. ???.4 contains the regression results of analyzing herding for
175 an increasing market for the given period. All daily returns which are equal to or above zero are considered to
176 be an increasing or rising state. From the given table, it is understood that both the coefficients are positive.
177 Since the herding coefficient ($\text{??} \text{ 2}$) is positive for up market it indicates the absence of herd formation for the
178 given period. Stationarity is an important feature of time series data. A preliminary analysis, the Stationarity of
179 the data series is tested using the Augmented Dickey-Fuller test (ADF). The results from Table ???.2 show that
180 the series is stationary at the level itself. Here, since the t-statistic value is more than the critical value, there
181 is a possibility of rejecting the null hypothesis that there is a unit root in the selected variable. Hence the series
182 is stationary. During extreme up market conditions, as shown in Table ???.6, the $\text{??} \text{ 2}$ coefficient is significantly
183 negative and thus proves the existence of herding behaviour during the given condition. It may be due to the
184 irrational behaviour of inexperienced investors who are easily misled by media and blinded by greed and envy.
185 During up market condition, the institutional investors, rather than relying on their analysis, they tend to follow
186 the market consensus by engaging in positive feedback trading. The above table ???.7 shows the regression results
187 of analyzing herding behavior under extreme down-market condition. Since the $\text{??} \text{ 2}$ coefficient is positive, it is
188 interpreted that there was no herding behaviour in the Indian stock market under the given condition during
189 the period of study. In a down market, investors in the Indian market seem to base their decisions on their
190 analysis rather than following market consensus. This may be because investors may be long-term investors who
191 do not panic and sell in a hurry under an extremely down-market situation. The results from table 4.8 suggest
192 that during the period of high trading volume, investors showed herding behaviour. This is evident because the
193 $\text{??} \text{ 2}$ coefficient is negative. The above table ???.9 shows that during the period of low trading volume, herding
194 behaviour is not detected in the Indian stock market since the $\text{??} \text{ 2}$ coefficient is positive. Thus, we can infer that
195 investors act more rationally during the low trading volume and do not tend to follow the market consensus.

196 15 CSAD

197 V.

198 16 Conclusion

199 Herding Behavior is a component of behavioural finance. The investors ignore their analysis of information and
200 tend to imitate the action of others, thus causing the price of the shares to deviate from its fundamental value
201 which ultimately results in market inefficiency. Investigating herding behaviour helps to identify the potential
202 risks and guide the investors in forming proper strategies while making investments in these markets.

203 Using the CSAD approach suggested by Chang et al. (2000), this study measures the presence of herding
204 behaviour in the sampled stock market under situations. Accordingly, the results reveal that herding behaviour
205 exists under extreme up market condition and during the state of the high trading volume. Thus, the concerned
206 authorities like SEBI must take appropriate measures to avoid herd formation under these situations. However,
207 no herding behaviour was detected during the other states of the market under study. It is assumed that investors
208 react more rationally under these situations and do not follow the market consensus. The results of previous
209 studies revealed that herding behaviour was rarely present in the Indian stock market. But from our study, we

210 can conclude that over the period the attitudes of investors have changed, and there has been herd formation
211 under various extreme situations. So, this is to be noted by the concerned authorities, and remedial measures
need to be adopted to ensure market efficiency in the Indian stock market. ¹

????????? ?? ??????? = ?? +
?? 1 à???"? ?? ?? ??????? ?? ??
.
1
1
Year 2021
1
?? Volume XXI Issue III Version I
2
() B
Global Journal of Management and Business
Research

Figure 1:

42

Mean	0.529732
Median	0.506427
Maximum	1.558260
Minimum	0.184270
Std. Dev.	0.143436
Skewness	1.531356
Kurtosis	8.280507
Jarque-Bera	3729.501
Probability	0.000000
Observations	2402

Figure 2: Table 4 . 2 :

44

?	0.523247
?? 1	-0.111683
?? 2	0.268582
Table	

Figure 3: Table 4 . 4 :

212

16 CONCLUSION

45

?

0.513410

? 1

0.040631

? 2

0.114390

The table given above reports the results of

it shows a positive and linear relationship between the market return and stock return.

regression analysis of herding for decreasing markets.

In this case also both the coefficients are positive. Hence the results suggest that the investors did not exhibit herding behaviour in the Indian stock market during a declining state for the given period. As a result,

Figure 4: Table 4 . 5 :

46

?	0.357872
? 1	0.083208
? 2	-0.855510

Figure 5: Table 4 . 6 :

47

?	0.447222
?1	0.228208
?2	0.018667

Figure 6: Table 4 . 7 :

48

?	0.592082
? 1	0.245381
? 2	-0.009119

Figure 7: Table 4 . 8 :

49

????????? ?? ?????????? = ?? + ?? ?? ?????????? â?"?? ???.?? ?????????? â?"? + ?? ?? ?????????? ??? ???.??

?	0.441447
? 1	0.405885
? 2	0.046262

Figure 8: Table 4 . 9 :

Year 2021
6
Volume XXI Issue III Version I
() B
Global Journal of Management and Business Research
© 2021 Global Journals

[Note: rising ?? + ?? ??]

Figure 9:

-
- 213 [Kumar and Sharma ()] 'A Test of Herding in Investment Decision: Evidence from Indian Stock Exchange'.
214 Santosh Kumar , Dr Roopalie Sharma . *Pacific Business Review International* 2018.
- 215 [Chiang and Zheng ()] 'an Empirical Analysis of Herd Behavior in Global Stock Markets'. T C Chiang , D Zheng
216 . *Journal of Banking and Finance* 2010. 34 p. .
- 217 [Batchu Satish, Dr. Padmasree. K., ()] 'an Empirical Analysis of Herding Behavior in Indian Stock Market'.
218 *International Journal of Management Studies* Batchu Satish, Dr. Padmasree. K., (ed.) 2018.
- 219 [Chang et al. ()] 'Examination of Herd Behaviour in Equity Markets: An International Perspective'. E Chang ,
220 J Cheng , A Khorana . *Journal of Banking and Finance* 2000. 24 (10) p. .
- 221 [Jlassi and Bensaïda ()] 'Herding Behavior and Trading Volume: Evidence from the American Indexes'. Mouna
222 Jlassi , Ahmed Bensaïda . *International Review of Management and Business Research* 2014.
- 223 [Moatemri Ouarda Abdelfatteh El Bouri Olivero Bernard ()] 'Herding Behavior under Markets Condition:
224 Empirical Evidence on the European Financial Markets'. *International Journal of Economics and Financial
225 Issues, Econjournals* Moatemri Ouarda & Abdelfatteh El Bouri & Olivero Bernard (ed.) 2013. 3 (1) p. .
- 226 [Lao and Singh ()] 'Herding Behaviour in the Chinese and Indian stock markets'. P Lao , H Singh . *Journal of
227 Asian Economics* 2011.
- 228 [Yao ()] 'Investor herding behaviour of Chinese stock market'. J Yao . *International Review of Economics and
229 Finance* 2013.
- 230 [Babu and Anooja ()] 'Investors' Herding In Indian Stock Market; An Empirical Analysis'. James J V Babu ,
231 Anooja . *IOSR Journal of Business and Management* 2018. IOSR-JBM.