

1 Determinants of Judicial Efficiency in Morocco

2 Yassine Achenchabe

3 *Received: 12 September 2021 Accepted: 2 October 2021 Published: 15 October 2021*

4

5 **Abstract**

6 In this paper, we aim to measure Moroccan judicial efficiency and identify its determinants
7 during the implementation of judicial reform. For this, we use a two-stage approach. First, we
8 use data envelopment analysis (DEA) under output orientation to measure the efficiency of
9 the 109 Moroccan courts. In the second stage, we explore determinants of efficiency using the
10 Ordinary Least Squares regression model. The results show a low level of courts efficiency of
11 56.2

12

13 **Index terms**— data envelopment analysis, efficiency measurement, judicial efficiency, efficiency determinants,
14 moroccan courts, judicial reform

15 **1 I. introduction**

16 The judicial system is one of the foundations of a modern state. It is the guarantor of the application of laws and a
17 factor of good governance and development impetus. Therefore, Morocco has become aware of the importance of
18 promoting its judicial system to support the country's structural reforms. In fact, a reform committee was formed
19 in 2012 to make a diagnosis and propose a reform plan. According to this diagnosis, the Moroccan judicial system
20 is plagued by dysfunctions and weaknesses, as well as slowness and deep complexity, and even some perverse
21 practices that have caused citizens to lose faith in the justice system. Following this diagnosis, the government
22 adopted a national charter for judicial reform, comprising six strategic axes, and began the implementation in
23 2013.

24 The state has committed significant human and financial resources to implement this reform. This includes
25 increasing the number of judges and clerks, improving training quality, and improving infrastructure and justice
26 services. This effort increased the share of the justice budget in the state budget to 1.6%, which raised questions
27 about the effectiveness and efficiency of the actions implemented.

28 Thus, our study aims to identify the efficiency determinants of Moroccan courts during the implementation of
29 the judicial reform charter. For this, measuring the court's efficiency in the first stage and using an OLS ordinary
30 least squares regression in the second stage to identify the variables that influence the court's efficiency.

31 As with most previous studies, the number of judges, clerks, and staff costs were used as inputs for variable
32 selection, while the number of cases resolved was used as output. Our primary source was data from the
33 Department of Justice. To analyze the efficiency determinants, we identified the exogenous variables mentioned
34 in the literature. Then we collected the data available in the reports of the Ministry of Justice and other state
35 organizations such as the High Commission for Planning.

36 As a result, this study contributes to a better understanding of the impact of judicial reform on court efficiency
37 and the factors that influence it. This can assist decision-makers in making managerial decisions. Furthermore,
38 to the best of our knowledge, our research is the first to examine judicial efficiency in Morocco and among
39 developing countries.

40 The paper is organized as follows: Section 2 presents a literature background of the study, Sect. 3 presents
41 the methods and data, Sect. 4 presents and discusses the results obtained, Sect. 5 contains the main findings of
42 the study and implications for future research.

3 LITERATURE REVIEW

43 2 II.

44 3 Literature Review

45 According to the literature review, the DEA method has been widely used in studies aimed at measuring efficiency
46 and productivity (Johnes, 2006a). This is enabled by the non-parametric method's ability to include multiple
47 inputs and outputs in the measurement, which is useful for non-profit organizations. According to Voigt (2016),
48 few studies have addressed the technical efficiency of justice systems, resulting in a lack of interest among
49 researchers in cost-related studies in this sector. Moreover, according to Rosales-Lopez (2008), there are fewer
50 DEA studies than those focusing on the quality of judicial decisions. This is more apparent in African countries
51 where we have identified a single study (Elbaly and Garcia-Rubio, 2011) which deals with judicial efficiency.

52 Researchers frequently mention the court size variable in studies that have addressed efficiency determinants.
53 Indeed, Yeung and Azevedo (2011) indicated that the size of a court, represented by the number of judges and
54 clerks, has a positive influence on the efficiency of Brazilian state courts. The same sense of relationship has been
55 proven by Schwengber and Sousa (2005) concerning the Rio courts in Brazil and by Santos and Amado (2014)
56 concerning the Portuguese courts. Beldowski et al. (2020) also indicated that an increase in the number of judges
57 can significantly enhance the number of resolved cases. Moreover, they found that court efficiency is significantly
58 associated with some auxiliary court staff members and variables capturing the economic development of court
59 jurisdiction. Similarly, Finocchiaro Castro and Guccio (2014) demonstrate that citizens' high demand for justice
60 and the presence of large courts are positively correlated with the presence of efficient courts.

61 On the other hand, Finocchiaro Castro and Guccio (2014) pointed out that the number of pending cases is
62 associated with low efficiency for Italian courts. The same result was reported by Ferro et al. (2018), Lewin et
63 al. (1982), and Castro and Guccio (2016) also mentioning the negative effect of workload.

64 In the same framework, Fauvrelle and Tony C Almeida (2018) studied the efficiency change determinants
65 of Brazilian State Courts between 2009 and 2014 and tested the influence of exogenous variables such as the
66 proportion of criminal cases. The results indicated the non-existence of a significant relationship between the
67 proportion of criminal cases and the court's efficiency. However, Garcia-Rubio and Elbaly (2011) asserted in
68 their work that the complexity of civil cases negatively impacts the efficiency of Egyptian first instance courts.

69 Regarding the influence of court human resources, Santos and Amado (2014) indicated that courts with a
70 higher proportion of administrative staff are more efficient than those with a higher proportion of judges. On the
71 other hand, some studies (Dimitrova-Grajzl et al., 2012; Schneider, 2005) highlight the academic level of judges
72 and indicate that the higher a judge's level of education (for example, a doctorate), the more efficient the court.
73 Other studies emphasize the significance of the court's management performance, which is directly related to the
74 court president's profile. In this regard, Yeung and Azevedo (2011) confirmed, using management performance
75 evaluation indicators, that efficiency is positively correlated with management performance.

76 From another perspective, several studies have indicated the relationship between court efficiency and the age
77 or seniority of judges. Thus, Ferro et al. (2018) showed through the study of first instance courts in Argentina
78 during the period 2006-2010 that the age of judges negatively affects efficiency. Indeed, the court is inefficient
79 as the average age of judges increases. Bhattacharya and Smyth (2001) reached the same conclusion when they
80 studied the supreme courts in Australia and found that judges perform poorly as they get older. Furthermore,
81 Ferro et al. (2018) and Dimitrova-Grajzl et al. (2012) found no significant relationship between a judge's service
82 length or gender and court productivity. Elbaly and Garcia-Rubio (2011), on the other hand, confirmed that
83 only high-ranking judges increase productivity and efficiency in Egyptian courts. Similar to judges, previous
84 studies have attempted to investigate the possible link between the profile of a court's clerk and its efficiency.
85 Thus, Ferro et al. (2018) indicated that the seniority of clerks positively affects efficiency, while there is no proven
86 relationship between the gender of staff and efficiency. Dimitrova-Grajzl et al. (2012) underline that there is no
87 relationship between the experience of clerks and the productivity of a court. They believe that the experience
88 of judges and their specialization is more important than the seniority or experience of court clerks.

89 In terms of economic activity, Fauvrelle and Tony C Almeida (2018) indicated that there is no correlation
90 between GDP per capita and court productivity. Indeed, socioeconomic factors do not always have an impact on
91 the efficiency of the court. According to Yeung and Azevedo (2011), the most efficient courts are those located
92 in economically active regions, where cases are typically more complex.

93 Another critical factor emphasized by Falavigna et al. (2015) is the court's geographic location. Indeed,
94 according to this study, the efficiency of Italian courts increases from south to north west. The characteristics
95 of the population were also treated as exogenous variables that could influence court efficiency. In this context,
96 Gorman and Ruggiero (2009) assessed the efficiency of prosecutor offices in 26 US states, concluding that those
97 in low-income counties with a minority population are less efficient. Furthermore, a 10% increase in the average
98 income of the population results in a 3% increase in efficiency, whereas there is no significant relationship between
99 the percentage of the population with a bachelor's degree and the efficiency of prosecutor offices.

100 In general, the literature review reveals that many studies have examined the determinants of efficiency from
101 various perspectives. However, the literature does not show similar results because the determinants vary across
102 countries and judicial systems.

4 III.

5 Methods a) Data Envelopment Analysis

105 Charnes et al. ??1978) introduced the Data Envelopment Analysis (DEA) as a non-parametric method using
 106 linear programming to measure the efficiency of a set of units called Decision-making units (DMU) by constructing
 107 a border enveloping all the possible combinations of inputs and outputs for each DMU. Two basic models have
 108 been proposed as part of the DEA method. The first is the CCR model (Charnes et al., 1978), which assumes
 109 that the units operate under constant returns to scale (CRS). The second is the BCC model (Banker et al., 1984)
 110 which assumes variable returns to scale (VRS).

111 The basic DEA CCR model is appropriate when the units operate at the optimal size and in a perfect
112 competition environment. It is focused on an input orientation, which means the minimization of inputs for a
113 given level of outputs, and on the assumption of constant returns to scale (CRS).

114 This model is unable to provide information on the extent to which the identified inefficiency may be due to
 115 technical or scale inefficiency. This is why Banker et al. (1984) proposed the BCC model to extend the initial
 116 CCR model by adopting the hypothesis of variable returns to scale (VRS). Thus, this allows the efficiency to be
 117 decomposed in a technical part due to the scale.

The study considers a set of n DMUs that consume m input to produce s outputs. Based on the rating proposed by Johnes (2004), the technical efficiency of a DMU k , as defined by Charnes et al. (1978), is measured by the ratio between the weighted sum of the outputs and that of the inputs: The technical efficiency of each DMU is maximized under certain conditions (Johnes, 2004). Firstly, the weights of the outputs and inputs of the DMU k cannot generate an efficiency score greater than 1 (equation 3). Secondly, the weights applied to outputs and inputs are strictly positive (equation 4). For each DMU, the following linear programming problem has to be solved by maximizing the ratio TE_k such as:

$$\begin{aligned} & \text{TE}_k = \frac{\sum_{j=1}^s w_j y_{kj}}{\sum_{i=1}^m w_i x_{ki}} \\ & \text{Maximize } \text{TE}_k \\ & \text{Subject to: } \sum_{j=1}^s w_j y_{kj} \leq \text{TE}_k \sum_{i=1}^m w_i x_{ki} \\ & \quad \sum_{j=1}^s w_j y_{kj} \geq \text{TE}_k \sum_{i=1}^m w_i x_{ki} \\ & \quad \sum_{j=1}^s w_j y_{kj} = \text{TE}_k \sum_{i=1}^m w_i x_{ki} \\ & \quad w_j \geq 0, \quad j = 1, 2, \dots, s \\ & \quad w_i \geq 0, \quad i = 1, 2, \dots, m \end{aligned}$$

?? ?? , ?? ?? > 0? ?? = 1, ? , ?? ; ?? = 1, ? , ??(4)

Where:

130 k: DMU for which efficiency is measured; j: The DMUs studied.

131 Two approaches are possible to solve this linear programming problem. The input-oriented model, where the
132 weighted sum of the inputs is minimized by keeping the outputs constant, and the output-oriented model, which
133 will be the focus of this study, where the weighted sum of the outputs is maximized while maintaining constant
134 the inputs.

135 Thus, the primal equation for the output-oriented VRS model to be used in this research is presented below.
136 It represents the multiplier form of the problem to be solved.

$$6 \quad ?????? \quad ? \quad ?? \quad ?? \quad ?? \quad ?? = 1$$

Where v_i : The weighting coefficient of each input.

$$? \ ? \ ? = 1 \ ? \ ? = 1(12) \ ? \ ? \ ? 0 \ ? \ ? = 1, ? , ?(13)$$

144 Where $1/\gamma_k$: The technical efficiency score; γ_j ? The weighting coefficients which measure the capacity of
 145 each DMU (j) to constitute the benchmark.

146 The VRS model also helps to identify the nature of returns to scale (increasing or decreasing returns to scale)
147 and the number of outputs that can be produced by each DMU using the same level of inputs.

148 Thus, based on the DEA model just described, we used the DEA method in the first stage to assess the
 149 efficiency of 109 Moroccan courts during the period of implementation of the judicial reform charter between
 150 2013 and 2018. The choice of this method is justified by its many advantages, including the fact that it is The
 151 duality rule in linear programming can be used to rewrite an equivalent form called "wrapped form". This is
 152 generally preferred since it contains only $s+m$ constraints instead of $n+1$ of the multiplier form. Thus, the dual
 153 formula of the output-oriented VRS model is written: appropriate for public organizations and does not require
 154 price information, as well as the relaxed assumptions on input-output data distribution and the non-specification
 155 of the technological frontier (Cooper et al., 2001).

153 of the technological frontier (Cooper et al., 2001).
154
155 Our research covers nearly all Moroccan courts, including 21 appeal courts, 68 first instance courts, 9
156 administrative courts, and 11 commercial courts. We excluded the Supreme Court because it is a law court
157 that cannot be compared to other courts, as well as one first instance court whose input and output values are
158 extreme and cannot be compared to other courts.
159

We used the DEA under output orientation method during the first stage analysis because Moroccan courts are plagued by issues related to a large stock of pending cases and slow processing. The DEA BCC model was used with the VRS assumption. This model is more appropriate for the courts' case because it is a monopoly system that is difficult to operate on an optimal scale.

11 VARIABLES LINKED TO SOCIO-ECONOMIC AND DEMOGRAPHIC FACTORS:

164 7 b) Two stage regression model

165 The literature refers to second-phase or "twostep" studies that link efficiency scores to explanatory variables.
166 These variables are generally considered as exogenous to the entity's production technology and are not directly
167 related to the inputs and outputs used to calculate efficiency.

168 Therefore, in the second stage of analysis, we identified a set of exogenous variables based on previous research
169 findings, then classified these variables into three categories: those related to judicial activity, those related to
170 judge's clerk's profiles, and finally variables related to socioeconomic and demographic factors.

171 There is no agreement in the literature on the best regression model to use in this case. Indeed, McCarty
172 and Yaisawarng (1993) argue that a Tobit model is more appropriate because the efficiency scores are capped at
173 1, whereas Hoff (2007) believes that an OLS regression is sufficient. McDonald (2009) considers that the Tobit
174 regression may be inappropriate and that the OLS regression gives more consistent results. More recently, Banker
175 and Natarajan (2008) proposed a model with a less restrictive formbased mainly on the use of the ordinary least
176 squares (OLS) method.

177 Thus, we performed the statistical tests for residuals normality and heteroskedasticity, then we opted for
178 ordinary least squares regression to identify the variables that influence the court's efficiency. Three models are
179 used, one with the technical efficiency CRS as the dependent variable, another with the efficiency under the
180 VRS assumption, and the last with the scale efficiency variable, while all 20 explanatory variables are used in all
181 three models. This decision is motivated by our intention to find disparities in the influence of the explanatory
182 variables on each of the efficiency types examined.

183 8 c) Data

184 All data about the judicial system came from the Moroccan Ministry of Justice, while data about exogenous
185 variables came from official state reports and documents.

186 There is no consensus in the literature regarding an ideal model for selecting the input and output variables
187 used in the DEA model (Johnes, 2006b; Avkiran, 2001). Therefore, we used inputs and outputs that are frequently
188 used in literature and that appear to us to be the most representative of the Moroccan court production process.

189 9 ? The inputs:

190 ? Nb_judge: Number of judges;
191 ? Nb_clerk: Number of clerks;
192 ? F_cost: Court operating expenses.
193 ? The outputs:

194 ? Cases resolved: Number of cases resolved or number of judgments rendered.

195 For the selection of exogenous variables, we consider the literature and the availability of data to integrate 20
196 independent variables into our model as follows:

197 ? Dependent variables:
198 ? EFF_CRS: Efficiency under CRS assumption;
199 ? EFF_VRS: Efficiency under VRS assumption;
200 ? EFF_S: Scale efficiency.

201 10 ? Independent variables:

202 Variables related to judicial activity ? FEM_CLERK proportion of female clerks.

203 11 Variables linked to socio-economic and demographic factors:

204 ? LOGPOP Log of the number of inhabitants in the perimeter of the court; ? GDP_H GDP per capita in the city
205 where the court is located; ? D_SDR The kilometer distance between the court and the regional administrative
206 entity in charge of managing the administrative, logistical, and human resources of the courts;

207 ? North, South, Center, or East: location of the court in the country; ? DIP_POP proportion of the
208 population with a higher education level; ? INC_POP Income of the region's population.

209 Table 1 shows the descriptive statistics for the input and output variables, the efficiency scores obtained in the
210 first stage of analysis, and the statistics for the exogenous variables, which are the independent variables in our
211 model. The period of implementation of the judicial reform charter has seen an upward trend in the means and
212 productivity of the courts. Thus, in 2018, the data shows an average of 35 judges and 109 clerks per court. On
213 the other hand, operating expenses vary significantly, with a minimum of 6.7 million dirhams and a maximum
214 amount of 112.8 million dirhams.

215 On the other hand, the statistics of exogenous variables, show a wide range of court sizes, whether in terms of
216 cases (from 1675 to 188936) or staff (30 to 467). The same observation applies to pending cases. The average is
217 around 5,245 cases, with a maximum of 35,972 pending cases. Our model also includes seven dummy variables
218 with mean values that are frequently less than 0.5.

220 12 Results and Discussion

221 The use of a two-stage approach allowed in a first stage to measure the court's efficiency between 2013 and 2018
222 in order to assess the impact generated by the implementation of the judicial reform on productivity. Secondly,
223 the use of the OLS regression allowed to test the influence of exogenous variables on the court's efficiency in 2018,
224 and thus to identify the determinants that allow courts to become more efficient in the context of reform.

225 We present in Table 2 the summary statistics of the efficiency results under the assumption of constant and
226 variable returns to scale. The results by the court groups are presented in Appendix 1. The results have shown
227 that the average efficiency level is relatively low in 2018, with 56.2% under the CRS assumption and 72.4% under
228 the VRS assumption. Thus, the Moroccan courts have a wide margin to improve their efficiency. Regarding the
229 results by court type, first instance courts are the least technically efficient, and the Appeal courts are the most
230 efficient. Our results also show that 19 courts had CRS efficiency scores between 9.9% and 50%, compared to
231 only six fully efficient courts.

232 The same results allow us to assess the nature of returns to scale. Thus, most courts operate under increasing
233 scales, which means that they can further increase their productivity by taking advantage of economies of scale.
234 Administrative courts are the exception, with a majority under decreasing returns to scale, implying the need to
235 divide these courts into several entities.

236 For the second stage, we present in Table 3 the results of the estimation of the analysis models, and in Appendix
237 2 the details results. The results show that the value of the statistic R2 for the three models relating to the CRS
238 efficiency, the VRS efficiency, and the scale efficiency is 0.6402, 0.4337, and 0.6501, respectively, indicating a good
239 quality of the econometric model since these values tend towards unity, except for the value of the model relating
240 to the VRS efficiency, which is relatively low. Nonetheless, we can confirm that there is at least one independent
241 variable that contributes to the variation in Moroccan court efficiency. According to the study's findings, CRS
242 efficiency is higher in courts that serve densely populated areas, as well as in courts with the greatest number of
243 experienced judges and pending cases. The least efficient courts, on the other hand, are distinguished by a large
244 number of pending cases and an overabundance of judicial personnel. On the other hand, the VRS technical
245 efficiency of courts increases for Appeal courts and when the number of cases pending is large and decreases when
246 the number of judicial staff is excessive. Finally, the scale efficiency associated with the evolution of the court in
247 an adequate production scale increases with the number of cases in process and the population covered by the
248 court's perimeter and decreases for Appeal courts and specialized ones.

249 These findings have several managerial implications for Moroccan court administrators. First, the fact that an
250 increase in the number of cases in progress improves court efficiency demonstrates that the increased workload
251 induced by the cases allows the court to benefit from economies of scale to resolve more cases with fewer resources.
252 This implies that the courts must maintain a high level of activity and not be divided or replaced by new courts.
253 However, it should be noted that we must continue to monitor returns to scale. Indeed, once a court is subject
254 to decreasing returns to scale, we can no longer improve its efficiency by increasing the number of cases handled.

255 Furthermore, the positive effect induced by the presence of a high proportion of experienced judges
256 demonstrates a long-standing mistake made by Moroccan court managers, who tend to cover the needs of overdue
257 courts with recruits. Indeed, it has been observed that the more experienced a judge becomes, the more he gains
258 stability by only practicing in courts of the same judicial district. As a result, whenever a court experiences
259 problems related to overwork or an increase in judgment delays, it becomes a priority when assigning new judges
260 recruited. As a result of our findings, there is a need to change the type of decisions made by assigning more
261 experienced judges to overdue courts, either as part of a temporary delegation of 3 or 6 months or by allowing
262 judges to transfer from other courts.

263 The negative effect on efficiency caused by the number of judges and clerks, on the other hand, implies that
264 all courts must consider the practices of their benchmark within the framework of the reference groups identified
265 during the first stage analysis. Although the staff is not always interchangeable, using the same number of judges
266 and clerks as the reference group's best practice court will almost certainly allow for an increase in the number
267 of cases resolved.

268 In the same context, the result regarding the negative impact of pending cases on court efficiency, which is
269 consistent with previous studies ??Marselli and Vannini, 2004; Ferro et al., 2018; Lewin et al., 1982; Schneider,
270 2005; Castro and Guccio, 2016), demonstrates the need for Moroccan courts to act on these cases by gradually
271 reducing them, rather than using this as an argument for an excessive increase in the resources mobilized.

272 Finally, it was found that court specialization (administrative or commercial) is a determinant of inefficiency.
273 Even though this result contradicts some previous study findings (Gorman & Ruggiero, 2009), it illustrates
274 that in the Moroccan context, specialization leads to the use of more means to resolve fewer cases than general
275 courts. This implies that the Kingdom should stop establishing new commercial or administrative courts. The
276 appropriate managerial solution would thus be to create specialized administrative structures at the level of the
277 already existing appeal courts and first instance courts, rather than to build new buildings, which would incur
278 additional costs.

279 Our findings on efficiency determinants provide us with guidelines to follow in order to improve court efficiency.
280 This primarily entails considering our recommendations when developing the judicial map, determining the courts'
281 human and logistical resources, and allocating these resources.

283 13 Conclusion

284 This study aimed to identify the efficiency determinants of Moroccan courts during the implementation of the
285 judicial reform charter. Thus, we applied the analysis approach in two stages. First, we assessed the court's
286 efficiency. Second, we investigated the impact of exogenous variables on the obtained efficiency scores.

287 This study filled a gap identified in our literature review since very few studies have attempted to evaluate
288 judicial efficiency and identify its determinants in African countries. So the results provide managerial
289 implications for court managers and can provide recommendations for decision-making.

290 In this context, the results showed that the average efficiency of Moroccan courts is relatively low despite an
291 improvement during the period of implementation of the reform. In addition, the majority of courts can use
292 economies of scale to resolve a larger number of cases, reducing the stock of pending cases and adjudication
293 delays. On the other hand, the results of the second stage analysis clearly show that the efficiency of Moroccan
294 courts is positively influenced by the size of the court in terms of cases, by the presence of experienced judges
295 and it increases in courts located in the most populous cities. On the other hand, efficiency decreases when the
296 number of pending cases is excessive, as well as when the number of judicial staff is excessive.

297 These findings are important for understanding judicial efficiency in Morocco and assisting managers in making
298 decisions. However, we believe that our research has some limitations that require further research. Among these
299 limitations are the difficulty of selecting all of the courts' inputs and outputs in measuring efficiency, as well as
300 the non-integration of a set of exogenous variables due to the lack of certain data. As a result, we believe that it
301 would be interesting to include other outputs in future research, such as prejudicial cases resolved in court using
302 alternative methods.

303 We also recommend experimenting with different methods of measuring efficiency, as well as different regression
304 models, such as Tobit's truncated regression. It is also possible to include other exogenous variables in the
regression model, such as remuneration, employee motivation, or the rate of court computerization. ¹

1

Mean	Std dev	Min	Max
------	---------	-----	-----

Figure 1: Table 1 :

2

	Mean	Std dev	Min	Max
EFF_CRS (CCR Model)	0,562	0,225	0,099	1,000
EFF_VRS (BCC model)	0,724	0,223	0,206	1,000
EFF_S Scale	0,790	0,217	0,192	1,000

Figure 2: Table 2 :

305

¹© 2021 Global JournalsDeterminants of Judicial Efficiency in Morocco

3

VARIABLES	Eff_CRS	Eff_VRS	Eff_S
SIZE_CASES	5.68e-06***	5.08e-06***	1.39e-06*
SIZE_STAFF	-0.000992***	-0.00121***	-8.61e-05
PEND_CASE	-1.10e-05**	-6.79e-06	-6.13e-06
PRP_JUDGE	0.601	0.722	0.0590
PRP_CRIM	0.141	0.157	0.0883
SPECIA	-0.433***	-0.0643	-0.488***
TYPE	-0.0675	0.198**	-0.314***
EXP_JUDGE	0.323***	0.208	0.154
FEM_JUDGE	-0.120	-0.159	0.0966
DEG_CLERK	-0.0655	0.179	-0.224
EXP_CLERK	0.000163	-0.000926	0.00673
FEM_CLERK	0.337	-0.128	0.480**
LOGPOP	0.323***	0.117	0.345***
GDP_H	1.04e-07	-2.52e-06	1.35e-06
D_SDR	0.000383	0.000344	3.25e-05
North	0.0659	-0.110	0.163
South	-0.0145	-0.0352	-0.0295
Center	0.0590	-0.0863	0.121

Figure 3: Table 3 :

306 [Marselli and Andvannini ()] , R Marselli , M Andvannini . 2004.

307 [Di Corte and Italiani ()] , L'efficienzatechnica Dea Distretti Di Corte , D'appello Italiani . 2004/09. Aspetti
308 Metodologici. p. 42. (Benchmarking E Arretrato Smaltibile. CRENOS Working Paper)

309 [Bhattacharya and Smyth ()] 'Aging and Productivity Among Judges: Some Empirical Evidence from the High
310 Court of Australia'. M Bhattacharya , R Smyth . *Australian Economic Papers* 2001. 40 (2) p. .

311 [Elbaly and Garcia-Rubio ()] 'Assessing judicial efficiency of Egyptian first instance courts: A DEA analysis'. N
312 Elbaly , M A Garcia-Rubio . *Joint Discussion Paper Series in Economics* 2011. p. 30.

313 [Garcia-Rubio and Elbaly ()] 'Assessing judicial efficiency of Egyptian first instance courts: A DEA analysis'.
314 M A Garcia-Rubio , N Elbaly . *Joint Discussion Paper Series in Economics* 2011. p. 30.

315 [Johnes ()] 'Data envelopment analysis and its application to the measurement of efficiency in higher education'.
316 J Johnes . *Economics of Education Review* 2006a. 25 (3) p. .

317 [Cooper et al. ()] 'Data envelopment analysis: A comprehensive text with models, applications, references and
318 deasolver software'. W W Cooper , L M Seiford , K Tone . *Journal-operational Research Society* 2001. 52 (12)
319 p. .

320 [Fauvrelle and Tony C Almeida ()] 'Determinants of Judicial Efficiency Change: Evidence from Brazil'. T A
321 Fauvrelle , A Tony C Almeida . *Review of Law & Economics* 2018. 14 (1) .

322 [Voigt ()] 'Determinants of judicial efficiency: a survey'. S Voigt . *European Journal of Law and Economics* 2016.
323 42 (2) p. .

324 [Rosales-Lopez ()] 'Economics of court performance: an empirical analysis'. V Rosales-Lopez . *European Journal
325 of Law and Economics* 2008. 25 (3) p. .

326 [Schwengber and Sousa ()] *Efficiency Estimates For Judicial Services In Brazil: Nonparametric FDH (Free
327 Disposal Hull) And The Expected Order-M Efficiency Scores For Rio Grande Do Sul Courts. Encontro da
328 anpec*, S B Schwengber , M Sousa . 2005. 33.

329 [Johnes ()] *Efficiency measurement. In International Handbook on the Economics of Education*, J Johnes . 2004.
330 Cheltenham: Edward Elgar Publishing Ltd.

331 [Ferro et al. ()] 'Efficient courts? a frontier performance assessment'. G Ferro , C A Romero , E Romero-Gomez
332 . *Benchmarking: An International Journal* 2018. 25 (9) p. .

333 [Banker and Natarajan ()] 'Evaluating Contextual Variables Affecting Productivity Using Data Envelopment
334 Analysis'. R D Banker , R Natarajan . *Operations Research* 2008. 56 (1) p. .

335 [Lewin et al. ()] 'Evaluating the administrative efficiency of courts'. A Y Lewin , R C Morey , T J Cook . *Omega*
336 1982. 10 (4) p. .

337 [Gorman and Ruggiero ()] 'Evaluating U.S. judicial district prosecutor performance using DEA: are disadvan-
338 taged counties more inefficient?'. M F Gorman , J Ruggiero . *European Journal of Law and Economics* 2009.
339 27 (3) p. .

340 [Avkiran ()] 'Investigating technical and scale efficiencies of Australian universities through data envelopment
341 analysis'. N Avkiran . *Socio-Economic Planning Sciences* 2001. 35 (1) p. .

342 [Beldowski et al. ()] 'Judges and court performance: a case study of district commercial courts in poland'. J
343 Beldowski , L Dabros , W Wojciechowski . *European Journal of Law and Economics* 2020. 50 p. .

344 [Schneider ()] 'Judicial career incentives and court performance: an empirical study of the German labour courts
345 of appeal'. M R Schneider . *European Journal of Law and Economics* 2005. 20 (2) p. .

346 [Dimitrova-Grajzl et al. ()] 'Judicial Incentives and Performance at Lower Courts: Evidence from Slovenian
347 Judge-Level Data'. V Dimitrova-Grajzl , P Grajzl , K Zajc , J Sustersic . *Review of Law & Economics* 2012.
348 8 (1) .

349 [Falavigna et al. ()] 'Judicial productivity, delay and efficiency: A Directional Distance Function (DDF)
350 approach'. G Falavigna , R Ipi , A Manello , G B Ramello . *European Journal of Operational Research*
351 2015. 240 (2) p. .

352 [Yeung and Azevedo ()] 'Measuring efficiency of Brazilian courts with data envelopment analysis (DEA)'. L L
353 Yeung , P F Azevedo . *IMA Journal of Management Mathematics* 2011. 22 (4) p. .

354 [Castro and Guccio ()] 'Measuring Potential Efficiency Gains from Mergers of Italian First Instance Courts
355 through Nonparametric Model'. M F Castro , C Guccio . *Public Finance Review* 2016. 46 (1) p. .

356 [Johnes ()] 'Measuring teaching efficiency in higher education: An application of data envelopment analysis to
357 economics graduates from uk universities 1993'. J Johnes . *European Journal of Operational Research* 2006b.
358 174 (1) p. .

359 [Charnes et al. ()] 'Measuring the efficiency of decision making units'. A Charnes , W Cooper , E Rhodes .
360 *European Journal of Operational Research* 1978. (2) p. .

13 CONCLUSION

361 [Santos and Amado ()] ‘On the need for reform of the Portuguese judicial system Does Data Envelopment
362 Analysis assessment support it?’. S P Santos , C A Amado . *Omega* 2014. 47 p. .

363 [Castro and Guccio ()] ‘Searching for the source of technical inefficiency in Italian judicial districts: an empirical
364 investigation’. Finocchiaro Castro , M Guccio , C . *European Journal of Law and Economics* 2014. 38 (3) p. .

365 [Hoff ()] ‘Second stage DEA: Comparison of approaches for modelling the DEA score’. A Hoff . *European Journal
366 of Operational Research* 2007. 181 (1) p. .

367 [Banker and Charnes ()] ‘Some models for estimating technical and scale inefficiencies in Data Envelopment
368 Analysis’. R Banker , A Charnes , Cooper , W . *Management Science* 1984. 30 (9) p. .

369 [McCarty and Yaisawarg ()] ‘Technical Efficiency in New Jersey School Districts’. T McCarty , S Yaisawarg .
370 *the Measurement of Productive Efficiency: Techniques and Applications*, S S Ho, Schmidt (ed.) 1993. p. .

371 [McDonald ()] ‘Using least squares and tobit in second stage dea efficiency analyses’. J McDonald . *European
372 journal of operational research* 2009. 197 (2) p. .