

1 A Study on Machine Learning Prediction Model for Company
2 Bankruptcy using Features in Time Series Financial Data

3 Masayoshi Kawamura

4 *Received: 7 December 2021 Accepted: 30 December 2021 Published: 11 January 2022*

5

6 **Abstract**

7 Based on such methods as a discriminant analysis and logistic regression, corporate
8 bankruptcy prediction models have been developed as a means to determine the soundness of
9 a company's operational status based on its financial statements. However, such analytical
10 methods work with binary variables, and thus, as the only outcome of machine learning, the
11 company in question is considered either likely or unlikely to go bankrupt. However, this is
12 insufficient for business operators who would need to know the possible risk factors of a
13 bankruptcy, allowing them to plan and implement measures to avoid any misfortunes. We
14 have therefore developed a prediction model that not only predicts but also identifies the
15 financial variables that can possibly drive the company to bankruptcy.

16

17 **Index terms**— machine learning; corporate bankruptcy prediction; time-series financial statement data
18 analysis.

19 **1 Introduction**

20 It is extremely important for a company and its stakeholders to have a clear understanding of the operational
21 standing of the company. According to Tasaka [1], to identify corporate credibility based on an analysis of
22 financial statements, studies on "credit analysis" began in the second half of the 19th century, and the Great
23 Depression in the 1930s prompted indepth research into the prediction of bankruptcies in the United States. As
24 stated in Section 2, many bankruptcy prediction models have been proposed in recent years using methods such as
25 a discriminant analysis and logistic regression. However, these analytical methods only return binary outcomes;
26 in most cases, they run machine learning on financial data and predict whether the company in question will or
27 will not go bankrupt. A few existing studies have discussed factors that explain the possible causes of bankruptcy
28 in the given cases. Nevertheless, they either carried out the explanatory consideration manually or employed a
29 different method for the explanatory analysis, falling short of developing a comprehensive (automated) process
30 model. However, from the viewpoint of business operators, knowing those factors that may lead to a bankruptcy
31 is crucial for the preparation of countermeasures. Given this background, we developed a model that facilitates
32 not only a prediction but also the identification of financial variables that may drive the company to bankruptcy.

33 To evaluate the model, from databases such as kabupro.jp (an online database on listed businesses in Japan),
34 we obtained financial data on financially sound companies and those that went bankrupt. For the operating
35 companies, we referred to the business classification table issued by the Japan Exchange Group, and for each
36 of the 10 primary business categories listed, 10 business entities were randomly selected as the samples. As a
37 result, we verified that the model succeeds in organizing bankrupt companies based on their bankruptcy factors.
38 Furthermore, the model demonstrated its ability to cluster a mixture of sound and bankrupt companies based on
39 their financial patterns, and based on the analyses of financial variables in these clusters, predict specific financial
40 variables that may be exacerbated and lead to bankruptcy.

2 II.

3 Existing and Relevant Studies

43 Considering Japanese companies, this study deals with a bankruptcy prediction model, and this section presents
44 an overview of existing studies on prediction models targeting businesses within the Japanese context. The new
45 aspect introduced in this study will be described with reference to such studies.

46 Table 2 lists some of the previous Japanese studies on corporate bankruptcy prediction models. Kono et al.
 47 [2] plotted the mean values of their data organized by fiscal year and compared their sample data (of bankrupt
 48 companies) with the mean values taken from five listed companies to propose a bankruptcy prediction model.

49 Okubo [3] proposed a model that evaluates the business management status based on eight patterns of
 50 combinations of positive (+) and negative (−) values for the chosen variables, as shown in Table ??; for
 51 example, if the operating cash flow yields a positive value and the investing and financing cash flows yield a
 52 negative value, the company in question is in a sound state of business management and will unlikely to go into
 53 bankruptcy.

54 Table ???: Company performance assessment criteria (source: [3])? ? ? ? ? ? ? ? ? ? ? ? - - -
 55 - Investing CF ? - ? - ? - ? - Financing CF ? - - ? ? ? - -

56 Ishikawa et al. [4], Mizoguchi et al. [5], and Jiang [6] employed a discriminant analysis and proposed predictive
 57 models for binary bankruptcy/nonbankruptcy outcomes based on machine learning using their respective datasets
 58 described in the "Data used" column of Table 2.

59 In addition, Jidaisho et al. [7] used logistic regression to analyze their data, also shown in Table 2, for machine
 60 learning and proposed a prediction model for a binary bankruptcy/non-bankruptcy assessment.

61 Masuyama [8] also analyzed the financial statements of bankrupt companies by chronologically organizing their
62 data, as described in Table 2. They also drew on surveys administered by the Small Business Institute Japan
63 and management improvement plans of individual companies to compare the actions taken to avoid bankruptcy,
64 based on which they attempted to conduct a bankruptcy prediction.

Finally, Saigo et al. [9] developed a model to evaluate companies by applying the discounted cash flow (DCF) formula to the free cash flow. DCF is a valuation method used to estimate the corporate value at certain discount rates based on the future cash flow expected from a business. Saigo et al. specifically addressed SMEs and micro-businesses and discussed measures to improve their corporate value based on the DCF. For example, they described "cutting unnecessary investments" and "optimizing the equity structure" as financial optimization measures to attain the lowest discount rate, which is one of the components of DCF, and "enhancing the business efficiency" and "investing in profitable businesses (business portfolio optimization)" to maximize the corporate value.

Most of the studies above applied machine learning to their respective financial data and attempted to attain binary outcomes between bankruptcy and nonbankruptcy prediction results. Whereas Masuyama and Jiang both went further and considered those factors responsible for bankruptcy, Masuyama only discussed the factors drawing on some case studies, and the latter employed another method to analyze the detrimental factors after using the discriminant analysis for the binary prediction. They fall short of integrating a series of analyses into a single automated process. Therefore, we developed a model that facilitates not only the prediction but also the identification of financial variables that may contribute to the bankruptcy of a company.

80 4 Proposed Concept a) Definition of bankrupt company and
81 analyzed data

82 This study uses the definition of a bankrupt company provided by the Teikoku Databank [10]. We researched
83 bankrupt companies on the Delisting website [11] and obtained the financial statement data of these companies
84 from either kabupro.jp [12] or COSMOS1 [13] (a corporate financial database administered by Teikoku Databank).
85 Regarding the financial statement data of non-bankrupt companies, we referred to the business classification table
86 issued by the Japan Exchange Group and randomly selected 10 companies for each of the 10 primary business
87 categories defined therein. A total of 84 FS data of bankrupt company datasets and 100 FS data of nonbankrupt
88 company datasets were obtained.

89 Each dataset consists of financial statements of the previous 5 consecutive years, counting from the year of
90 bankruptcy for the 84 bankrupt companies, and from fiscal 2020 for the 100 non-bankrupt companies. Note
91 that, whereas the bankrupt companies were selected to ensure that their corporate sizes and types of trade
92 were unbiased, the same could not be ascertained for nonbankrupt companies because they were randomly
93 selected according to the primary business categories; thus, bias control will be recommended for future evaluative
94 experiments with additional datasets.

95 5 b) Indexes for bankruptcy prediction

96 We drew on the data used in the existing studies shown in Table 2, that is, the data in the "Data used" column,
 97 based upon which we identified bankruptcy prediction indexes (explanatory variables) for employment in our
 98 proposed model. Table 3 lists these indexes, together with the rationale for the choice.

99 6 Current ratio

100 This expresses a company's liquid assets against its liabilities due within the current yearperiod, and was chosen
101 because the ratio is considered to decrease as the company nears its bankruptcy. It may be noted that a quick
102 ratio was not selected because the scope of current assets was too narrow.

103 7 Operating cash flow

104 This was chosen because it is considered that, in the case of bankruptcy owing to a poor operational performance,
105 the operating cash flow from the main business diminishes.

106 8 Investing cash flow

107 This was chosen because the investing cash flow is likely to increase when a company struggles to settle its
108 liabilities, which is attributed to sales of assets such as facilities and company vehicles.

109 9 Operating cash flow/current liabilities

110 This indicates a company's ability to settle the liabilities due within the current year from the cash derived from
111 its business activities. This is chosen because the ratio is considered to decrease when the company's performance
112 declines.

113 10 Inventory turnover (sales revenue/inventory)

114 A poor performance will lead to a decline in sales revenue, resulting in an increase in inventory (in this case,
115 dead inventory), hence the choice.

116 11 Operating cash flow/sales revenue

117 This was chosen because it is possible that bankruptcy may result from a company being excessively short of
118 cash to fulfill its obligations owing to too many illiquid assets such as collectibles despite realizing a large sales
119 revenue.

120 12 Return on equity (net profit/equity)

121 Did a bankrupt company practice efficient business management? Was its operating efficiency decreasing over the
122 years prior to the bankruptcy? Knowing the answers to these questions is considered important in formulating
123 preventive measures.

124 13 Equity/total liabilities

125 A company likely to go bankrupt undoubtedly has its equity minimized (and in some cases, its liabilities
126 increased), resulting in a decrease in this ratio, and hence the bankruptcy decision. As another reason, it
127 indicates the company's reserve of capital without obligations after offsetting the liabilities.

128 14 c) Extraction of features from time-series financial data

129 We will now describe the model used for extracting the features of each of the aforementioned explanatory
130 variables, observed during a 5-year period. Dealing with time-series data, it is common practice to use the
131 logarithm rate of change (logarithmic return) [14,15]. However, this cannot be obtained if a negative value is
132 involved when obtaining a natural logarithm. For this reason, we decided to calculate, instead of the logarithm,
133 the rate of change of the financial indexes over a 5-year period, as shown below: In Formula 1, (Y_t) expresses
134 the change rate between the fiscal year t and the preceding year $t-1$, and X is each of the eight variable specified
135 as evaluation indexes in the previous section. $Y_t = (X_t - X_{t-1}) / X_{t-1}$ (1)

136 We will now discuss a method used to extract the feature values from the trend during the 5-year period $(Y_t, Y_{t-1}, \dots, Y_{t-4})$. The following five patterns (1 through 5) were considered using the current asset data
137 included in Table 3, the results of which are shown in Table 4.

138 ? Arithmetic mean of the negative value change rate: This takes as a feature value the mean value of the
139 change rate over the 5-year period (yearequivalent mean value), as in $"(Y_{t-4} + Y_{t-3} + Y_{t-2} + Y_{t-1} + Y_t) / 5."$

140 ? Absolute minimum of negative value change rate: This takes as a feature value the absolute minimum of
141 the negative change rates over the 5-year period, as in $"\min(|Y_{t-4}|, |Y_{t-3}|, |Y_{t-2}|, |Y_{t-1}|, |Y_t|)"$.

142 ? Absolute maximum of negative value change rate: This takes as a feature value the absolute maximum of
143 the negative change rates over the 5-year period, as in $"\max(|Y_{t-4}|, |Y_{t-3}|, |Y_{t-2}|, |Y_{t-1}|, |Y_t|)"$.

144 ? Sum of negative value change rate: This takes as a feature value the sum of the negative change rates over
145 the 5-year period, as in $"\sum(Y_{t-4}, Y_{t-3}, Y_{t-2}, Y_{t-1}, Y_t)"$.

146 ? Year-equivalent change rate between 4 years before and the final year: This takes as a feature value the
147 change rate in years equivalent to between the first and last years of the 5-year period, as in $"(Y_t - Y_{t-4}) / Y_{t-4}"$.

19 CONCLUSION

150 The procedure is as follows: Table 4 represents one company that had articulated differences in the rates
151 of change. Here, "Absolute maximum of negative value change rates" had the largest negative value in the
152 reduction of current assets, and was thus selected as the feature value $\{FV(\text{Feature Value})\}$. The formula is
153 expressed as follows, where Y_t is obtained, as shown in (1). $FV = -\max(|Y_t|, |Y_{t-1}|, \dots, |Y_{t-4}|), \{Y_t, Y_{t-1}, \dots, Y_{t-4}\} < 0$ (2)

154
155 Here, FV was obtained for each of the eight bankruptcy prediction indices (explanatory variables), which
156 will serve as the input data for clustering in the next section. \cdot Change rate: Arithmetic mean; \cdot Absolute
157 minimum of negative change rate; \cdot Absolute maximum of negative change rate; \cdot Sum of negative change rate;
158 \cdot Year-equivalent change rate between 4 years before and the final year.

159 15 d) Clustering (Machine learning) model

160 We take the FVs obtained for the eight previously described bankruptcy prediction indexes and create matrix
161 data, as illustrated in Table 5, which will be fed into the machine learning (clustering). Note that the rows
162 are equal to the number of sample datasets, and the names of sampled companies (both bankrupt and non-
163 bankrupt) will appear in the first column. The data in Table 5 are the distance matrix and not the adjacency
164 matrix. The adjacency matrix cannot be used for clustering because distance data are generated between samples
165 (companies). For this reason, we selected a clustering method based on the distance matrix, as advanced by
166 Otsuki [16]. According to this method, the Euclidean distance is obtained based on the principal component
167 scores calculated until the cumulative contribution ratio surpasses 90%, forming a matrix of principal component
168 scores. A silhouette analysis, as shown in (3), is then run on this principal component score matrix, and the
169 number of clusters K is taken at the highest silhouette value at which clustering takes place.?? ?? = ?? ?? ??
170 ?? ?????? (?? ?? ? ?? ??)(3)

171 In (3), a_i is the mean distance between point (node) i and other points in the same cluster, which represents
172 the cluster density; and b_i is the smallest mean distance between point i and points in any other cluster than
173 that in which i is a member, representing the dissimilarity to neighboring clusters. This means that, if a cluster
174 partition is applied at the largest mean silhouette value, clustering can be carried out under such conditions in
175 which the clusters are the densest and the most dispersed from one another.

176 Finally, we describe the modeling and prediction procedures based on this clustering method.

177 ? Modeling procedures: learning datasets (184 companies, with mixed bankruptcy statuses) > normalization
178 > principal component analysis (PCA) > silhouette analysis to determine the number of clusters (K) > clustering
179 with K as the predetermined number of clusters > saving the learning model.

180 ? Prediction procedures: input the dataset non-bankrupt company) > normalization using the learning model
181 > PCA using the learning model > predicting the cluster to which the dataset belongs with reference to the
182 learning model. The prediction outcomes are output for each company, and thus each company will have one
183 prediction result.

184 16 IV.

185 17 Clustering Results and Discussions a) Clustering results

186 We applied the above clustering model to the data described in section 3.1, and as a result, four clusters were
187 formed. Table ?? shows the member distributions. In the next section, the prediction results are discussed. Here,
188 as in a correlation analysis, if thresholds are assumed as a "ratio of bankrupt companies (%) ≥ 0.7 " for a cluster
189 with a high likelihood of bankruptcy and a "ratio of bankrupt companies (%) ≤ 0.3 " for a low likelihood, then
190 a non-bankrupt company is interpreted as not likely to go bankrupt if the company's input dataset belongs to
191 Cluster 1, whereas it is likely an interpretation if the dataset falls within Cluster 3 or 4.

192 18 Table 6: Member distribution resulting from the clustering 193 b) Corporate bankruptcy prediction using sample datasets

194 We ran the process ? prediction (test) using sample financial statement data for non-bankrupt companies 1 and
195 2, the results of which are shown in Figures ?? and 2, respectively. As indicated by the star symbols, Company
196 1 (Figure ??) belonged to Cluster 1, whereas Company 2 (Figure ??) belonged to Cluster 3. Figure 4 shows the
197 member features of Cluster 3, where non-bankrupt Company 2 belongs. The markedly high contributing factor
198 of the bankrupt company group in Cluster 3 is the return on equity (return_on_equity_dmax), followed by the
199 investing cash flow (investment_cash_flow_dmax). Given that the ratio of bankrupt companies in this cluster
200 is 78%, as indicated in Table ??, it is interpreted that Company 2 can be at risk of bankruptcy if its return on
201 equity and investment in cash flow decline, suggesting the need to consider countermeasures in relation to these
202 factors.

203 19 Conclusion

204 By extracting feature values from chronologically ordered financial data used in machine learning, this study
205 sought to develop a prediction model that not only predicts a bankruptcy during a binary judgment, but can

206 also identify the financial variables that are likely to drive a company into bankruptcy. The evaluation test
207 using sample data was successful in that the model clustered bankrupt companies according to the explanatory
208 factors for their bankruptcy. Non-bankrupt companies were also grouped into clusters with the corresponding
209 risk factors of bankruptcy. Thus, the study demonstrated that this model of cluster analysis, based on feature
210 values taken from time-series financial statement data, is effective in predicting and identifying risks of future
bankruptcy.¹

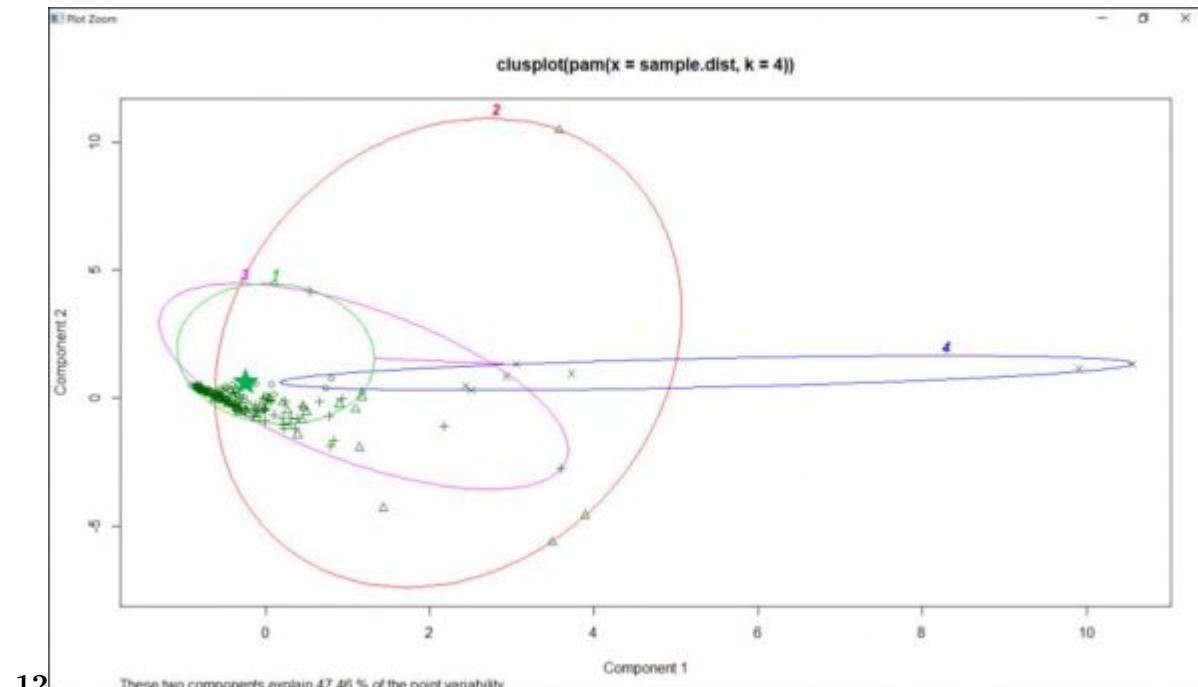


Figure 1: Fig. 1 :Fig. 2 :

211

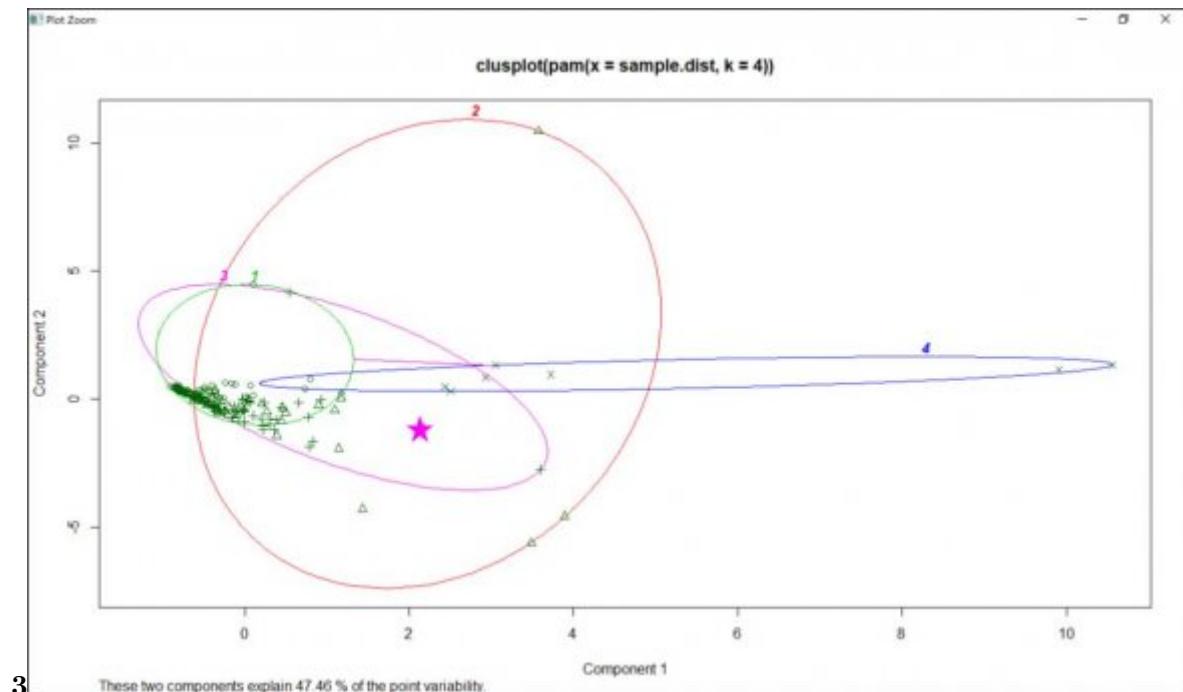


Figure 2: Fig. 3 :

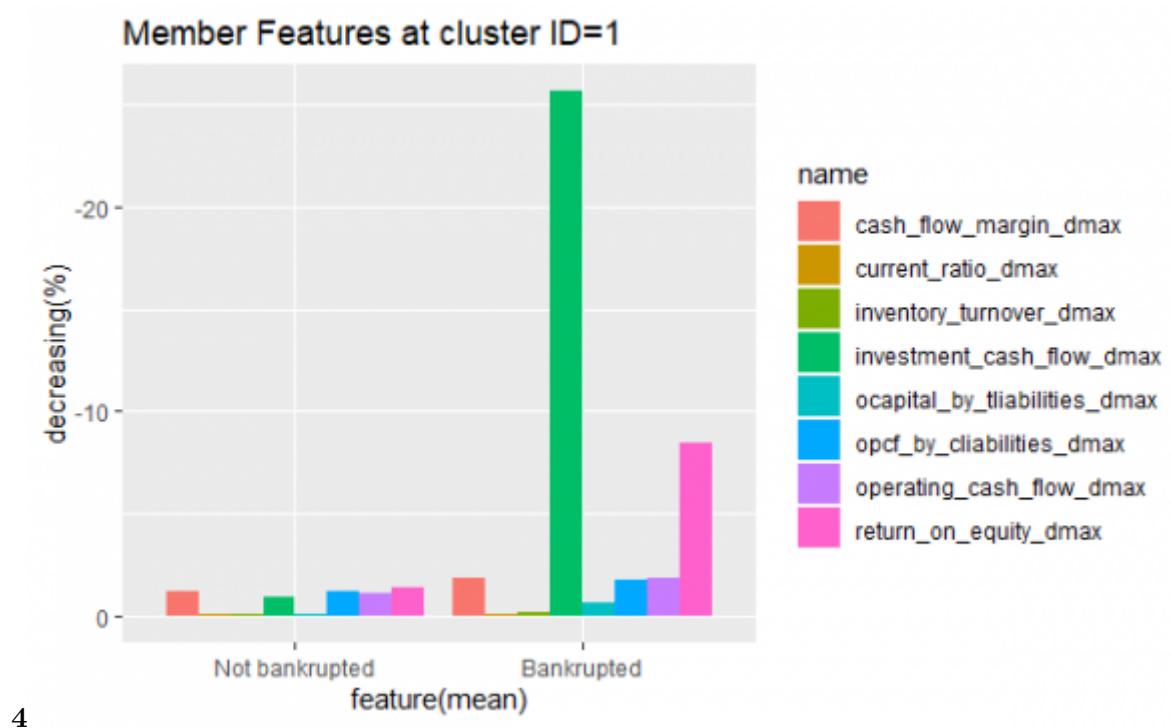


Figure 3: Fig. 4 :

2

Study title	Analytical method	Prediction model
Yosuke Kono et al.: Discussion on the Possibility of Predicting Corporate Bankruptcy [2]	Plotted the mean values of the data organized by fiscal years and compared between the sample data (of bankrupt companies) and the data taken from five listed companies	
Ayaka Okubo: Study on Black-in Bankruptcy Mechanism through Financial Statements Focused on Cash Flow Statement [3]	Developed 8 patterns of corporate cash flows. financial states according to the con	
Masaru Ishikawa & Ngai Chung Sze: A Study of Corporate Bankruptcies Based on the Cash Flow Information [4]	Discriminant analysis	

[Note: 4. Operating cash flow margin: $Operating\ CF/Sales\ revenue$ 5. Corporate CF to sales ratio: $(Operating\ CF + Investing\ CF)/Sales\ revenue$ 6. Total assets to operating CF ratio:]

Figure 4: Table 2 :

3

Explanatory variable	Selection rationale
Current assets	

Figure 5: Table 3 :

4

Current assets

[Note: Note: Key to the numbers in a circle:]

Figure 6: Table 4 :

5

Company	Current ratio	Explanatory variable	Operating cash flow	?	?	Equity/Total liabilities
A	FV	FV		FV		FV
B	FV	FV		FV		FV
?	FV	FV		FV		FV
n	FV	FV		FV		FV

Figure 7: Table 5 :

.1 Acknowledgment

212 This study was funded by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
213 through a Grant-in-Aid for Scientific Research (KAKENHI), No. 19K01843.

214 [Databank (2019)] , Teikoku Databank . <https://www.tdb.co.jp/tosan/teigi.html> (accessed on July
215 22, 2019).

216 [Pro Website (2019)] , Kabunushi Pro Website . <http://www.kabupro.jp/code/9963.htm> Oct. 17, 2019.

217 [Saigo and Nakano ()] *A Basic Study on the Cash Flow Accounting Information and Valuation*, Yasuhiro Saigo
218 , Kazutoyo Nakano . 2012. p. . Bulletin of Toyohashi Sozo University (in Japanese)

219 [Ishikawa and Chung Sze ()] 'A Study of Corporate Bankruptcies Based on the Cash Flow Information'. Masaru
220 Ishikawa , Ngai Chung Sze . *Toyo Gakuen University Business and Economic Review* 2012. 3 (1) p. . (in
221 Japanese)

222 [About logarithmic return -Formula for return on stock (2019)] *About logarithmic return -Formula for return on*
223 *stock*, <http://capitalmarket.jp/post-431/> (accessed on Oct. 17, 2019. (in Japanese)

224 [Delisting website (2019)] *Delisting website*, <http://delisting.info/index.html> Oct. 17, 2019.

225 [Mizoguchi and Nakajima ()] *Discriminant analysis of companies and bankruptcy probability estimation*, Ryuji
226 Mizoguchi , Shunsuke Nakajima . 2012. Nanzan University Department of Information Engineering and
227 Science 2012 Dissertations (Abstracts) (in Japanese)

228 [Kono and Murata ()] 'Discussion on the possibility of predicting corporate bankruptcy'. Yosuke Kono , Masahiko
229 Murata . *Momoyama Gakuin University Gakusei Ronshu*, 2009. (in Japanese)

230 [Seigotasaki] *Empirical study about a bankruptcy company: It is based on the model of Beaver and Altman*,
231 Seigotasaki . p. . KwanseiGakuin University NII-Electronic Library Service (in Japanese)

232 [Jidaisho et al. ()] 'Experiment of Risk Prediction on Japanese Companies Using a Bankruptcy Risk Prediction
233 Model'. Koji Jidaisho , Hamido Fujita , Masaki Kurematsu , Jun Hakura . *Iwate Prefectural University Faculty*
234 *of Software and Information Science Dissertations*, 2017. (in Japanese)

235 [Feihong ()] 'Financial Forecast and Cash Flow Information'. Jiang Feihong . *Meiji University Studies in Business*
236 *Administration*, 2003. p. . (in Japanese)

237 [Otsuki ()] 'Model for Labeling to Latent Factor by Silhouette Clustering Using Principal Component Distance
238 Matrix'. Akira Otsuki . *Journal of Information Processing Society of Japan Database* 2020. 13 (4) p. .

239 [Okubo ()] Ayaka Okubo . *Study on Black-in Bankruptcy Mechanism through Financial Statements focused on*
240 *Cash Flow*, 2010. 2010. Junior College of the University of Aizu Research Dissertation Papers for Year (in
241 Japanese)

242 [Tokuoiwaisako ()] *Serial Correlation of Stock Price Indexes and Cross-autocorrelation of Portfolios by Size*, Tokuoiwaisako . <http://www.ier.hit-u.ac.jp/~iwaisako/research/JRWfinal.pdf> (accessed on Dec. 21 2018. (in Japanese)

243 [Masuyama ()] 'The Conditions for Corporate Growth in the Context of Corporate Bankruptcy Analysis'. Yuichi
244 Masuyama . *HikoneRonso Online Journal (Shiga University Economic Journal)* 2017. (413) p. . (in Japanese)

245